Universal Plug and Play
Eventing Vulnerabilities

Joeri Blokhuis

February 4, 2009
Research question

Introduction

Eventing

Research

Conclusion
What vulnerabilities can be found in UPnP Eventing?

- Can a Callback URL contain any URL and thereby attack a website everytime a state variable changes?
- Can the subscribers list be filled in such a way that it can’t accept any new subscriptions?

Testing is done on two devices using Intel’s UPnP library.
History of UPnP

- UPnP Forum formed in 1999
- > 800 members
- Various industries
 - Computers, networking, consumer electronics, mobile products
- Define UPnP standards
Simplify home networking
 ▶ Auto-configuration of devices
 ▶ No user interaction

Using existing standards:
 ▶ TCP, IP, UDP, HTTP, SOAP and XML

Simple architecture can be defined by:
 ▶ Devices, services and control points
UPnP

- UPnP has several phases:
 - Addressing
 - Description
 - Control
 - Eventing
 - Presentation
Eventing

- Keep state of variables
- Will notify registered entries when a variable changes
- Publisher/subscriber model
 - Publisher (service)
 - Subscriber (control point)
 - General Event Notification Architecture (GENA)
GENA

- Uses HTTP as transport
- Three new HTTP methods
 - SUBSCRIBE
 - UNSUBSCRIBE
 - NOTIFY
Callback URLs

- A subscription request has the following format

 SUBSCRIBE /upnp/control/WANIPConn1 HTTP/1.1
 HOST: 192.168.2.1:52869
 CALLBACK: <192.168.2.100/test>
 NT: upnp:event
 TIMEOUT: Second-1800

- A successful subscription will respond with

 HTTP/1.1 200 OK
 DATE: Sat, 01 Jan 2000 22:30:45 GMT
 SERVER: Linux/2.4.18-MIPS-01.00, UPnP/1.0, Intel SDK for
 UPnP devices /1.2
 SID: uuid:16766c80-1dd2-11b2-a2ce-e7182fbea8a1
 Timeout: Second-1800
Callback URLs[1]

- Any URL is accepted as a callback
 - Any IP address (not LAN only)
 - No domains
 - Same callback URL can be registered
- Bad submitted URLs respond with
 - 501 Method Not Implemented
Callback URLs[2]

- Service won’t delete subscriptions
- Contradicts with Intel’s specifications
 - "Avoid unnecessary consuming of resources"
UUID

- Universally Unique IDentifier
- Generated on every successful accepted subscription
- Only known to
 - Publisher
 - Subscriber
 - Control point
- UUIDs can be sniffed to
 - cancel a subscription
A cancellation message has the following format

UNSUBSCRIBE: /upnp/control/WANIPConn1 HTTP/1.1
HOST: 192.168.2.1:52869
SID: uuid:16766c80-1dd2-11b2-a2ce-e7182fbea8a1
Denial of service

- Both devices were prone to a denial of service
- Caused by sending too much subscriptions
- Submitting subscriptions with an infinite timeout
- All services (UPnP) will stop working
 - no event notifications
 - no responses to discovery messages
 - no control
Denial of service[2]

- Done by creating a while-loop
- Sleep function to slow down subscriptions
 - Edimax: 18000 subscriptions and 42 minutes
 - Sitecom: 14000 subscriptions and 1,5 hour
Denial of service[3]

- Devices use a maximum number of subscriptions as resources allow
 - this is set when UPnP is enabled
- Suspected that
 - more resources are being used due to handling the load of subscriptions
 - maximum number will then be lower
 - causing a DoS
- Explains why the number of subscriptions aren’t consistent to cause a DoS
Intel’s UPnP Eventing stack is found to be reasonably solid
- Any Callback URL is possible
- UUIDs used for communication
- Denial of Service
Questions