Modern age burglary

Jeroen Klaver & Kevin de Kok

University of Amsterdam
System & Network Engineering
Outline

- Introduction
- Research question
- Approach
- Analysis
- Attack vectors
- Impact
- Conclusion
Introduction

- **Old setup**
 - Alarm systems over PSTN
 - Secure

- **New setup**
 - Alarm systems over IP
 - Secure?
Main question:

"Is it possible to perform a burglary without getting noticed by influencing the communication between the alarm system and the control room?"
Sub questions:

- Which attack vectors that targets communication can be used to bypass the alarm system?
- What could be the impact if alarm systems over IP-based networks are vulnerable for different attack vectors?
- Which improvements can be made if alarm systems over IP-based networks are vulnerable for different attack vectors?
Approach

- Traffic capturing part 1
 - Blackbox approach
 - Getting familiarized with the data
 - Recognising information
- Traffic capturing part 2
 - Greybox approach
 - Different events
Network setup

- Hub or bridge
Traffic analysis

- Same packets used every time
 - Registration
 - Activating
 - Deactivating
 - Heartbeat
 - Alarm trigger
- Dedicated ports used for each account
- Each packet is acknowledged
Packet analysis (1)

- Two parts
 - Header
 - Event specific
- Acknowledgement from control room
 - Two versions
 - No repeating pattern
Packet analysis (2)

- Different account code
 - 4 digit number
- Two differences
 - Specific part
 - Header
Packet analysis (3)

- Specific part
 - 4 bytes differ
- Encryption
 - Hex values compared to account code
 - XOR
 - Key = 0xB5
- UDP port number
 - Acknowledgment of registration packet
 - Same encryption as account code
Packet analysis (4)

- Header
 - 2 bytes differ
- Must be account code
- Example encryption
 - Account code: 0011
 - Bytes: 0x00 and 0x11
 - XOR
 - Key = 0x85
Think as a burglar

- Activate alarm on location X, deactivate from location Y.
- Trigger alarms from different accounts.
Attack vectors

- Replay attack
 - Disable / enable alarm
 - Trigger alarm sensors
 - DoS (system and human)
- Brute force attack
Replay attack

- Capturing network traffic
- Working data sets
 - Disabling alarm
 - Triggering sensors
DoS attack

- Overloading control room with fake alarms
 - Impact on availability security guards

- Requirements
 - Data set from a real alarm
 - Port numbers
 - Account code
 - Checksum
Brute force attack

- Control room "coorporates"
 - Static registration port used
- Account code + checksum = brute force
 - Account code: 4 digits (0-9) == 10,000 possibilities
 - Checksum: 1 byte == 256 possibilities
 - Total: $10000 \times 256 = 2,560,000$ possibilities
 - Total time needed:
 \[
 \frac{(2560000/2)/60/60/24)}{~~} \approx 15 \text{ days}
 \]
Impact

- PSTN-2-IP sold by different security company's
 - Therefore PSTN-2-IP is actively used
- Newer systems available:
 - Strong encryption
 - Separate vpn routers
 - QoS
Improvements

- Rewrite protocol
- Protection against replay attacks
- Improve confidentiality
 - Avoid replay attacks with account information
- Improve integrity
 - Avoid decrypting payload from packets
- Improve availability
 - Avoid DoS possibilities
Conclusions

"Is it possible to perform a burglary without getting noticed by influencing the communication between the alarm system and the control room?"

- Protocol vulnerable for replay attacks
- No advanced crypto is used
- DoS
- A burglar needs technical knowledge and resources.
"It takes 1,5 hours before a line failure is detected by the control room"
Questions?

- Report soon available at:
 https://www.os3.nl/2009-2010/students/kevin_de_kok/rp1