Automatic end-host configuration
Research Project 1

Sebastian Dabkiewicz

System And Network Engineering
University of Amsterdam

8th February 2012
Research Question

How can one create an automatic end-host configuration?

Sub-Research Questions

- What are the requirements for a fast establishment of the connection?
- What is the current situation?
- What kind of implementations are available?
- What kind of configuration is needed?
- Is there support for a cross platform solution?
Environment

- Circuit-based networks
- Built for long time
- Time intensive to build
- Automated GLIF Open Lightpath Exchanges (GOLE) with Network Service Interface (NSI) from Global Lambda Integrated Facility (GLIF)
Goal

- Quick online
- Almost no configuration (Zeroconf)
- Cross-platform
Zerconf

- Link local addresses
- Multicast DNS
- DNS Service Discovery
IPv4 Link Local address

- IP range 169.254/16
- Not routable
- 3 ARP probes to verify address is available
- RFC 3927 - Dynamic Configuration of IPv4 Link-Local Addresses
IPv6 Link Local address

- fe80::/64
- Derived from MAC-Address
- Present on every interface
- RFC 4291 - IP Version 6 Addressing Architecture
- RFC 4862 - IPv6 Stateless Address Autoconfiguration

MAC to IPv6ll

MAC-Address: 00:15:c5:e1:41:bf
Becomes: fe80::215:c5ff:feee1:41bf/64
multicast DNS

- 221.0.0.254 & ff02:0:0:0:0:0:0:fb
- Listen on port 5353
- .local. like vanilla.local.
- IETF Draft - Multicast DNS - Dec 9, 2011
DNS Service Discovery

- Discover services
- DNS SRV Service Types
- e.g. `_ssh._tcp`
- IETF Draft - DNS-Based Service Discovery - Dec 9, 2011
Implementations

Two main implementations

- Bonjour
 - Shipped with MAC OS X
 - Available for Windows

- Avahi
 - Open source implementation
 - Linux, BSD
Implementations

Two main implementations

- Bonjour
 - Shipped with MAC OS X
 - Available for Windows

- Avahi
 - Open source implementation
 - Linux, BSD
Test-Environment

- **Servers**
 - Ubuntu 11.10

- **Clients**
 - MAC mini with MAC OS X
 - Windows 7 Professional laptop
Test-Environment

- **Servers**
 - Ubuntu 11.10

- **Clients**
 - MAC mini with MAC OS X
 - Windows 7 Professional laptop
Test-Environment

Server installation
Clients

12 / 27 S. Dabkiewicz
Automatic end-host configuration
avahi-daemon

- Main part of Avahi
- Configuring parameters

avahi-daemon configuration file

```conf
use-ipv4=yes
use-ipv6=no
allow-interfaces=eth1
deny-interfaces=eth0
```
avahti-autoipd

- creates interface
- ethX:avahi
- ipv4ll address

```
sebas@vanilla:~$ ifconfig eth1 & ifconfig eth1:avahi
eth1      link encap:Ethernet  HWaddr 00:15:00:01:41:bf
          inet addr:192.0.2.120  Bcast:192.0.2.255  Mask:255.255.0.0
          inet6 addr: fe80::215:c5ff:fe11:42bf/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:464 errors:0 dropped:0 overruns:0 frame:0
          TX packets:119 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:10653 (10.6 K) TX bytes:10208 (10.2 K)
          Interrupt:17

eth1:avahi  Link encap:Ethernet  HWaddr 00:15:00:01:41:bf
          inet addr:169.254.100.115  Bcast:169.254.255.255  Mask:255.255.0.0
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          Interrupt:17

sebas@vanilla:~$ 
```
avahi-utils

- browse the network for services
- resolve services

```
sebas@tomato:~$ avahi-browse -all -r -t
+ eth1 IPv4 vanilla
+ eth1 IPv4 vanilla SSH
+ eth1 IPv4 vanilla
+ eth1 IPv4 vanilla [00:15:c5:e1:41:bf]
  = eth1 IPv4 vanilla
    hostname = [vanilla.local]
    address = [169.254.18.24]
    port = [22]
    txt = []
  = eth1 IPv4 vanilla SSH
    hostname = [vanilla.local]
    address = [169.254.18.24]
    port = [22]
    txt = []
  = eth1 IPv4 vanilla
    hostname = [vanilla.local]
    address = [169.254.18.24]
    port = [80]
    txt = []
  = eth1 IPv4 vanilla [00:15:c5:e1:41:bf]
    hostname = [vanilla.local]
    address = [169.254.18.24]
    port = [8]
    txt = []
```

Automatic end-host configuration
avahi-utils 2

avahi-publish

- Publish services
- Name
- SRV-type
- Port
avahi-utils 3

avahi-resolve

- Resolve Hostname
- Resolve IP-address
Clients

- **Mac Mini**
 - MAC OS X
 - No additional installation

- **Windows Laptop**
 - Windows 7 Professional
 - Installation of Safari browser
 - Bonjour control panel
Interface configuration

- Interface configuration is needed
- No DHCP! Time-out takes 5 minutes
- Use ipv4ll

```
/etc/network/interfaces
(...)
auto eth1
iface eth1 inet ipv4ll
```
Cross platform

avahi-publish

- Windows 7
 - installation of Bonjour needed
 - Bonjour SDK
- Mac OS X
 - Works out of the box
Timing

```
sebas@vanilla:~$ ping tomato.local
PING tomato.local (169.254.9.234) 56(84) bytes of data.
64 bytes from tomato.local (169.254.9.234): icmp_req=1 ttl=64 time=1.28 ms
64 bytes from tomato.local (169.254.9.234): icmp_req=2 ttl=64 time=0.099 ms
64 bytes from tomato.local (169.254.9.234): icmp_req=3 ttl=64 time=0.098 ms
64 bytes from tomato.local (169.254.9.234): icmp_req=4 ttl=64 time=0.098 ms
64 bytes from tomato.local (169.254.9.234): icmp_req=11 ttl=64 time=3.04 ms
64 bytes from tomato.local (169.254.9.234): icmp_req=12 ttl=64 time=0.099 ms
64 bytes from tomato.local (169.254.9.234): icmp_req=13 ttl=64 time=0.098 ms
^C
--- tomato.local ping statistics ---
13 packets transmitted, 7 received, 46% packet loss, time 11998ms
rtt min/avg/max/mdev = 0.098/0.688/3.041/1.044 ms
sebas@vanilla:~$`
```
Avahi-resolve

- Avahi standard publishes AAAA-record on IPv4
- Shows first IPv6 record then IPv4 record
- Use -4 or -6 switch to get direct the correct record
Multicast-DNS

- Problems using dig to resolve hostname
- Packet send out on eth0 (internet interface)
- Add static route for 224.0.0.251/32
DNS Service Discovery

- Not every service is announced
- Avahi provides XML-file format
- *.service
Conclusion

- Zeroconf fits in the situation
- On servers some configuration needed
- Quick online, about 6 seconds
Demo with Mac mini and evocam
Questions?

Report & Presentation available at:

http://goo.gl/FmfKf
and
http://goo.gl/ruWEQ