
University of Amsterdam

System & Network Engineering

Using git to circumvent censorship of
access to the Tor network

July 24, 2013

Authors:
Björgvin Ragnarsson
Pieter Westein

bjorgvin.ragnarsson@os3.nl
pieter.westein@os3.nl

Abstract

The Tor network is designed to provide anonymity and privacy to its users but
suffers from censorship from network operators who don’t want their users to access
Tor. Traffic analysis for censorship purposes can be mitigated by obfuscating traffic
and Tor developed a technology called pluggable transports to do so.

We present git-pull-tor, a pluggable transport for Tor that obfuscates the network
traffic to resemble usage of the Git version control system. We compare the download
speed when using git-pull-tor to downloading files without an obfuscation proxy
and find the current version to have considerable performance issues. We find the
strength of the system to be its accuracy in imitating Git, since it uses the Git
program to perform the obfuscation. The weakness with regard to traffic analysis is
that is produces traffic flow patterns that are unusual for Git.

Contents

1. Introduction 1
1.1. Research question . 2

2. Related work 2
2.1. Obfuscation . 2
2.2. Pluggable transports . 2
2.3. Protocol identification and fingerprinting 3

3. Background 3
3.1. Tor anonymity network . 3
3.2. Obfsproxy . 4
3.3. Git version control system . 4

4. Design 6
4.1. Threat model . 7
4.2. The network transfer implementation . 7
4.3. Obfsproxy as a base for git-pull-tor . 8

5. Evaluation 9
5.1. Performance evaluation: Download speed 9
5.2. Security evaluation: Detecting git-pull-tor 10

6. Conclusion 11

7. Future Work 12

8. Acknowledgements 12

A. Performance measurement: Data tables i

B. Client transport script ii

C. Pluggable transport implementation for obfsproxy iii
C.1. Main code . iii
C.2. Helper code for encoding/decoding TCP streams in a Git repository . . . v

1. Introduction

Tor is a distributed network of encrypted tunnels for users to route their communications
through to provide anonymity. The traffic is encrypted in as many layers as the number
of hops it takes through the Tor network, a technique called onion routing [1]. This
allows users to use the Internet without their network operator knowing the content or
the destination of their communications.

Some network operators do not allow connections to the Tor network and the original
method to implement this policy was to block all IP addresses of Tor relays, which are
publicly known. This lead to the introduction of bridge relays, which are not listed
in the Tor relay directory. Bridge relay operators give out information to users about
their bridges in hope that the knowledge doesn’t reach the censoring network operators.
This has lead to more sophisticated network analysis by censors, using Deep Packet
Inspection technology (DPI). The Tor implementation uses OpenSSL1 to set up a secure
TLS connection but the handshake phase of the protocol makes Tor distinguishable from
other applications using OpenSSL.

To combat identification of Tor usage, a feature called pluggable transports [2] was
developed. Pluggable transports act as SOCKS proxies2 through which traffic between
the client and bridge is directed. Each pluggable transport needs a client and a bridge
implementation, where the traffic is obfuscated before it is sent over the network and
de-obfuscated at the other end. Support for pluggable transports was added to Tor
to decouple protocol-level obfuscation from the core protocol and make it easier for
developers to experiment with novel circumvention methods.

This paper introduces a pluggable transport to hide Tor network traffic as being traffic
from usage of the Git program 3. Firstly, Git is a popular version control system amongst
developers who share code, often using publicly available servers. This might make the
economic impact of blocking Git traffic indiscriminately too high. Secondly, Git is used
to transfer data of various sizes and might therefore fit some of different usage patterns
of Tor users.

The remainder of this paper, is structured as follows. Section 2 covers the related
research on the subject of obfuscation, pluggable transports and protocol identification.
Section 3 provides details into the technology used, namely Git and Tor. Section 4
discusses design decisions made for the prototype pluggable transport as well as im-
plementation details. The performance and censorship resistance of the prototype is
evaluated in section 5. The paper concludes with section 6 and suggestions for future
work are found in section 7.

1http://en.wikipedia.org/wiki/OpenSSL
2SOCKS proxies forward TCP and UDP packets from clients to servers. They were originally developed

for access control and firewalling purposes but can also serve as a circumvention tool.
3http://git-scm.com/

1

1.1. Research question

The main goal of this research is to design and implement a proof of concept pluggable
transport which acts like Git. The research questions are the following:

Is it possible to shape Tor traffic in such a way that it resembles to the Git
protocol? What methods could a censor apply to identify Tor bridge relays
communicating with end users using such an obfuscated protocol?

Additionally, we want to know what the overhead of using git-pull-tor is by measuring
throughput and repeat the measurement with no obfuscation.

2. Related work

Previous work has been done in the field of obfuscating Internet protocols and Tor
specifically. We provide an overview of some of that work in this section.

2.1. Obfuscation

Obfuscation in general, works toward information hiding with many techniques that are
important in a number of areas [3]. The areas that this research is focusing on are
Covert channels and Anonymity.

In covert channels there is a message that someone wishes to send secretly. This
message is then hidden within a innocuous message. The hiding process involves a
secret-key to restrict detection and/or recovery of the embedded data.

With anonymity, the goal is to hide a users identity, by supplying the user with a fake
identity, to be used during Internet activities [4]. Tor extends on the basic anonymity,
by addressing the issue of IP tracking, giving users a fake IP.

2.2. Pluggable transports

Appelbaum and Mathewson proposed a protocol for handling Tor obfuscation in a gen-
eral way, called pluggable transports [2]. Since then, pluggable transport support has
been adopted by the Tor software and different implementation have surfaced.

This research centers around mimicry of a known protocol to remain hidden from
a DPI systems. SkypeMorph, introduced by Moghaddam et al. [5], is an example
for this approach. It encapsulates Tor traffic into a connection that resembles Skype
video traffic. Another example is StegoTorus, introduced by Weinberg et al. [6], which
disguises Tor traffic from DPI systems by resembling HTTP, Skype and other protocols.
Both implementations were investigated by Houmansadr, Brubaker & Shmatikov who
found the approach taken to be flawed [7]. The complexity of protocols such as Skype
and inter-dependency of sub-protocols makes it very hard to imitate them. Houmansadr

2

et al. argue that specific implementations of protocols must be imitated if protocol
mimicry is to be effective.

Another approach to obfuscating the Tor protocol, is to do so without mimicking
a specific protocol. Dust, introduced by Wiley et al. [8], is such a system. Another
example is ScrambleSuit, introduced by Philipp Winter et al [9]. It is a protocol layer
above TCP with the purpose to obfuscate the transported application data.

2.3. Protocol identification and fingerprinting

Protocol identification algorithms, in conjunction with fingerprinting techniques, are
widely used to block and filter out unwanted traffic and to restrict Internet access.
Encryption mechanisms are often used to circumvent these algorithms, but even then,
protocols can be identified by looking at certain parts of the encryption. Gebski et al. [10]
developed a method, using a graph-comparison approach, to build profiles of several
protocols and classify an unknown encrypted protocol against these profiles using only
the visible behaviour of the protocol; meaning time, size and direction of the packets.

Besides identifying protocols, due to certain characteristics, fingerprinting flows can
be effective as well. Crotti et al. [11] present a flow classification mechanism based on
three properties of an IP packet; size, inter-arrival time and arrival order. A Gaussian
filtering operation is used to derive protocol fingerprints and is effective to deal with
noise such as jitter and changes in the packet size.

3. Background

Our prototype pluggable transport builds on several technologies. This section provides
background information into some of them.

3.1. Tor anonymity network

To access the Tor network, a user needs to perform two steps before sending data. In
figure 1(a) the first step is shown. A directory server is contacted by the user, to
obtain information about the topology of the overlay network. The user will receive a
list of nodes, in order to build a circuit. These nodes are known as relay nodes. They
either act as entry, middle or exit node.

Figure 1(b) shows the second step. Each point in the Tor network represents a node.
A minimum of three nodes is needed to build a circuit. The first node, known as the
entry node, brings the user into the Tor network. Nodes following the entry nodes are
known as middle nodes, and extend the circuit. The last node in the circuit is known
as the exit node. This node supplies the user of its IP address and hostname, to be
used while accessing the Internet.

3

(a) Tor Step 1 (b) Tor Step 2

Figure 1: Tor flow diagram: (a) and (b)

To access a website, that is censored in the user’s location, the user connects to the
Tor network and requests the website. However, the censor connects to the Tor network
in order to block Tor nodes. To counter this problem, the Tor project introduced Tor
bridges. These are unlisted Tor nodes and can be used as entry points to the Tor
network. These bridges are not publicly listed, so users need to request a list of bridges
manually [12].

3.2. Obfsproxy

Obfsproxy is name of original implementation of the pluggable transports specification.
The software has been reimplemented in Python with extendability in mind and func-
tions as a framework for implementing new pluggable transports. Currently there are
two pluggable transports implemented, obfs2 and obfs3. Both transports encrypt the
traffic using the AES block cipher 4. Obfs3 improves upon obfs2 by using Uniform
Diffie-Hellman (UniformDH) key exchange to establish a shared key [13]. UniformDH
uses public keys with properties similar to random numbers, which makes it harder to
detect that an obfs3 protocol handshake is taking place.

Like other pluggable transports, obfsproxy functions as a separate application, inde-
pendent from Tor. Figure 2 shows how Tor connects to obfsproxy, using the SOCKS
protocol. Applications other than Tor can also use the obfsproxy framework by commu-
nicating with it using the SOCKS protocol.

3.3. Git version control system

Git is a version control system (VCS), originally created for development of the Linux
kernel, and has gained widespread use among software developers since its initial release
in 2005. Git is distributed, unlike classic centralized VCSes, which means that developers

4https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

4

Figure 2: Obfsproxy diagram. (Source: https://www.torproject.org/projects/obfsproxy.html.en)

have the complete history of tracked content and are able exchange data directly between
themselves without being bound to using a central VCS server. The distributed nature
of Git is not important for this research and the following assumes a setup with a client
and a server.

3.3.1. The object store

A Git repository functions as a key-value data store. The key is calculated as a SHA1
hash of the data with an additional header. The header specifies the type of object, size
in bytes and ends with a null byte. The SHA1 key is used as a file name to refer to the
data as stored on disk. Before storing the data, it is compressed using zlib. Figure 3
shows a high level overview of this process.

Figure 3: Storing a file in a Git repository

Git was developed to manage source code and therefore it needed to be able to rep-
resent files and directories in its object store. Objects with file content are called blob
objects. A tree object contains a list of SHA1 hash object references, each with an as-
sociated file name, type of object (blob or tree) and Unix permissions information. This
structure allows file system directories to be represented as Git objects. Other types are
commit objects which are used to keep track of revisions of trees and tag objects which
are most commonly used to mark commits as releases of the tracked source code.

3.3.2. The Git transfer protocol

The Git network transfer protocol has two modes of operation, upload and download of
objects. Figure 4 shows the interaction between the client and the server for those two
operations. Figure 4 (a) describes the process when a client fetches data from the server
and figure 4 (b) describes the process when a client uploads data to the server.

5

(a) Fetching data (b) Uploading data

Figure 4: Interaction between a client and a Git server

Uploading data
For uploading data to a remote Git repository, the send-pack and receive-pack processes
are used. The former runs on the client-side while the latter runs on the server-side.
When the user executes the git push command, the send-pack process is activated,
initiating a TCP connection to the server. This process sends a request to run the
receive-pack process on the server. The receive-pack process responds with a list all
references 5 it has. From that information, the send-pack process is able to determine
what commits are available locally but not remotely and sends them to the remote
receive-pack process as a compressed file, containing all the objects. Upon receiving, the
server responds with a success or failure message.

Downloading data
The download operation is similar as uploading. When the git pull command is executed
on the client machine, the fetch-pack process is activated, initiating a TCP connection
to the server. A request is sent to the server, to run the upload-pack process on the
server which returns a list of all the references available in the repository. The fetch-
pack process looks at which objects are locally present and responds to the server with
the objects that are missing. The server responds by running the upload-pack process,
which begins sending a file containing all the requested objects.

4. Design

This section starts by defining a threat model and from there, technical decisions for the
prototype pluggable transport design are explained.

5A reference is a pointer to a commit which is important to keep track of, such as the latest commit.

6

4.1. Threat model

The adversary (or censor) in the proposed model is an Internet Service Provider (ISP)
or a state-level authority with control of the national network. The censor keeps a list
of undesired Internet services outside of the network under its control and blocks access
to them based on IP addresses of servers and by forging DNS replies. Such undesired
services include the Tor relays that are listed in the public Tor Directory. The threat
model assumes that the censor does not go as far as white listing acceptable services and
block everything else. The maintenance cost of keeping such a list up-to-date and the
cost related to delayed access to services in the process of being white listed is assumed
to be too high. The censor does not have control over users’ computers or software
installed on them.

For blocking unknown yet undesired services such as Virtual Private Networks (VPNs)
or Tor bridge outside of its network, the censor monitors connections crossing the bound-
ary of its network. The following methods are used to detect connections to undesired
services:

Deep packet inspection (DPI) allows the censor to do pattern analysis on application
protocols and drop the connection when there is a positive match. This requires
predefined rules for each protocol.

Active probing is used when it is not possible to construct a DPI pattern rule that
unambiguously detects a connection to an offending service. This can be the case
when the DPI software detects a TLS connection but cannot know if the underly-
ing protocol is acceptable or not, such as a connection to a Tor bridge. The censor
then connects to the possible Tor bridge and checks if it speaks the Tor protocol.

Statistical analysis such as size of packets and inter-arrival times.

The aim of this project is to obfuscate the Tor protocol to bypass pattern analysis.
The strategy applied is mimicking an existing protocol, and the assumption is that the
censor does not want to block Git entirely.

4.2. The network transfer implementation

To perform the actual network transfer, we decided to use the Git program6 to do the
heavy lifting and not implement network protocols ourselves. This is done to maximize
the correctness of our mimicry and make network traffic analyses harder, as recom-
mended by Houmansadr et al. [7]. An additional benefit is that the Git program supports
four transport protocol, HTTP, HTTPS, SSH in addition to its own Git protocol.

We assume that the client cannot accept incoming TCP connections, because of a

6www.git-scm.com

7

NAT configuration or otherwise. This means that the client has to initiate sending and
receiving of data. The prototype, running on a client machine, comes with a script that
runs in the background and periodically sends and receives data from the bridge. The
transfer script can be found in Appendix B.

4.3. Obfsproxy as a base for git-pull-tor

We decided to base our pluggable transport on obfsproxy, which is described in section
3.2. We modified the obfsproxy dummy transport to our needs. The dummy transport
does nothing more than passing the TCP stream unmodified between a Tor client and
a bridge.

Our use of obfsproxy was a bit unorthodox. Usually, an obfsproxy client makes a
TCP connection to an obfsproxy bridge and over that TCP connection they communicate
using one of the supported obfuscation protocols. Since we decided to let the Git program
take care of the network transfer, we did not need to have obfsproxy set up a TCP
connection to the bridge. To simplify prototype development, we decided to use the TCP
connection as a ’hello’ message from the client, to tell the bridge to start monitoring its
Git repository for incoming data. This TCP connection is kept alive without sending
any data packets while the obfsproxy client and bridge communicate over Git. This
produces a recognizable pattern of a TCP three-way handshake followed by Git traffic
on another port and should be replaced in future revisions of git-pull-tor. That could
be done by encoding the connection handshake and tear-down in a Git repository, just
as currently is done with the TCP stream.

Obfsproxy implements its pluggable transports with the help of Twisted7, an event-
based network programming framework, which has semantics that separate protocols
from the underlaying transport layer. The pluggable transport receives the TCP stream
from Tor in variable length chunks, and provides the chunk as a parameter to its
receivedUpstream method which is executed every time such a chunk is received. In
the case of git-pull-tor, the receivedUpstream method creates a commit in a Git repos-
itory that includes only one file with the content of the chunk from the TCP stream.
Each commit is linked to the previous one and can queue up in the Git repository for
the other end to process. At the same, a thread runs in the background that monitors
the Git repository for incoming commits, processes them in a chronological order and
executes the receivedDownstream method which relays them to the TCP connection to
Tor.

The full Python code for our pluggable transport can be found in Appendix C.

7https://twistedmatrix.com/

8

5. Evaluation

Once the prototype was in a working condition, we carried out performance measure-
ments and further security analysis.

5.1. Performance evaluation: Download speed

An experiment was conducted to get insight into how well it performed. An Ubuntu
12.04 server was configured to run Tor version 0.2.4.12-alpha as a bridge. Obfsproxy
with git-pull-tor support was installed along with an OpenSSH server. The client was a
Lenovo T410 laptop with Ubuntu 13.04, running the same Tor and obfsproxy versions
in addition to an OpenSSH client and the curl downloading tool. The transport script
from Appendix B was configured to connect to the remote Git repository using SSH.

The experiment measures the time it takes to download a 10 MB file using curl with
four different settings:

• Tor was configured to use the bridge and the obfsproxy git-pull-tor pluggable
transport. Curl used the Tor SOCKS proxy.
• Tor was configured to use the bridge and the obfsproxy dummy pluggable transport.

Curl used the Tor SOCKS proxy.
• Obfsproxy was configured to use git-pull-tor pluggable transport. Curl used the

obfsproxy SOCKS proxy.
• Obfsproxy was configured to use the dummy pluggable transport. Curl used the

obfsproxy SOCKS proxy.

Measurements for each of the four settings were repeated 10 times. The results are
depicted in figure 5 and the full results of the experiment can be found in Appendix A.
It is worth noting that the download failed half of the time for the first setting. The
reason for this is unknown but a bug in git-pull-tor could be an explanation.

9

Figure 5: Download speed comparison of different methods of downloading a 10MB file.
The current prototype running over Tor is significantly slower than a direct
download of a file.

5.2. Security evaluation: Detecting git-pull-tor

Thorough analysis of possible ways to censor git-pull-tor could not be conducted within
the time frame of this research. We did, however, compare git-pull-tor to ”Requirements
for parrot circumvention” as put forward by Houmansadr et al. [7]:

Mimicking the protocol in its entirety including side protocols and their interdepen-
dence. Houmansadr et al. go further and recommend the approach we took; use
an existing implementation which embeds the payload because of complexities in-
volved in recreating protocols faithfully. We selected a simple protocol with only
one optional side protocol, DNS. We have not researched if a lack of a DNS re-
quest when Git traffic is detected should be considered an alarm in a censoring
DPI system.

Mimicking implementation specific artifacts and error handling is done correctly be-
cause of the same reason, we use a previous protocol implementation.

Mimicking typical traffic including traffic patterns generated by typical user behavior.
We have not researched what can be considered typical Git traffic, neither generally
nor withing a specific censored network. We have not researched which versions
of the Git programs are popular and should therefore be used. Still, we think is
the weakest point of git-pull-tor because the high frequency of git push and pull
traffic. The current version of the transport script sends data to the bridge and
fetches data from it in repeated cycles which produces very unique traffic pattern.

10

The following weaknesses of git-pull-tor are also of notice:

The HTTP and Git protocol transport mechanisms don’t encrypt the payload. The pay-
load is compressed and a capable censor could decompress it on the fly and do DPI
analysis on the content. A censor will probably first try other methods to block
git-pull-tor since since decompression adds load to the DPI system. An additional
layer of obfuscation which makes the payload look more like content of normal git
objects, such as source code.

Payload is written to disk. The current version of our pluggable transport writes the
payload TCP stream to Git repositories at both the client and the bridge. It is
relatively easy add support for deleting this data but even then it might reveal
a lot of forensic information for an investigator who might be able to reconstruct
the entire communication between a client and a bridge. This data will encrypted
when used with Tor but if git-pull-tor is used as SOCKS proxy to transfer plain-
text information such as HTTP traffic, the user’s privacy might get completely
breached.

6. Conclusion

This paper presents git-pull-tor, a pluggable transport for Tor that disguises communi-
cations as Git traffic. As with other circumvention technology, git-pull-tor will work as
long as it is not being targeted censors. Once the decision has been made to try to block
it, time and resources are required.

A key feature the use of an existing program to transfer the payload traffic, and thus
it limits the possibilities of fingerprinting based on inaccurate implementation of the
network protocol. However, the usage of the protocol can look suspicious in the eye of
a censor as continual polling is unusual for Git usage such as software development.

Performance measurements show that the prototype offers lower throughput than the
use of plain Tor. However, the bit rate is enough to facilitate browsing text-based or
low-visual-enhanced websites. This could be improved with further optimizations.

11

7. Future Work

The current prototype of git-pull-tor is in its infancy. Future development and discussion
of its viability will take place at: https://trac.torproject.org/projects/tor/ticket/9192

The following are ideas for additional features to the pluggable transport, in case it
will be included into the obfsproxy framework.

Eliminate disk writes. As mentioned in section 5.2, disk writes are unwanted in certain
situations. If the Git program would be modified to work with repositories in
memory, these disk writes would be eliminated.

Make use of public Git servers for relaying traffic. Users can be blocked from directly
accessing bridges but still be able to connect to public Git hosting providers. This
could be used for relaying the traffic between the user and the bridge. This comes
with additional performance issues and the same disk writing problems as previ-
ously discussed.

Layered obfuscation. An additional layer of obfuscation could be useful if censors start
uncompressing the HTTP & Git protocol traffic for identification. This layer could
be in the form of encoding the payload to look like source code or other acceptable
data.

8. Acknowledgements

We would like to thank our supervisor, Henri Hambartsumyan, for his feedback, support
and review of the paper. We would also like to thank the rest of the team at Deloitte
Risk Services Netherlands for their input, in particular Daan Muller for reviewing a draft
version.

12

References

[1] David Goldschlag, Michael Reed, and Paul Syverson. Onion routing for Anonymous
and Private Internet Connections. Communications of the ACM, 42(2):39–41, 1999.

[2] Appelbaum J. and Mathewson Nick. Proposal: Pluggable transports for circumven-
tion. https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/

180-pluggable-transport.txt. Accessed: 2013-06.

[3] Fabien AP Petitcolas, Ross J Anderson, and Markus G Kuhn. Information hiding-a
survey. Proceedings of the IEEE, 87(7):1062–1078, 1999.

[4] Jacob Palme and Mikael Berglund. Anonymity on the Internet. Retrieved August,
15, 2009.

[5] Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad Derakhshani, and Ian Gold-
berg. Skypemorph: Protocol Obfuscation for Tor Bridges. In Proceedings of the
2012 ACM conference on Computer and communications security. ACM, 2012.

[6] Zachary Weinberg, Jeffrey Wang, Vinod Yegneswaran, Linda Briesemeister, Steven
Cheung, Frank Wang, and Dan Boneh. StegoTorus: A Camouflage Proxy for the
Tor Anonymity System. In Proceedings of the 2012 ACM conference on Computer
and communications security, pages 109–120. ACM, 2012.

[7] Amir Houmansadr, Chad Brubaker, and Vitaly Shmatikov. The Parrot is Dead:
Observing unobservable network communications. In Proceedings of the 2013 IEEE
Symposium on Security and Privacy, 2013.

[8] Brandon Wiley. Dust: A Blocking-Resistant Internet Transport Protocol. 2011.

[9] Philipp Winter, Tobias Pulls, and Juergen Fuss. ScrambleSuit: A Polymorph Net-
work Protocol to Circumvent Censorship. arXiv preprint arXiv:1305.3199, 2013.

[10] Matthew Gebski, Alex Penev, and Raymond K Wong. Protocol identification of
encrypted network traffic. In Web Intelligence, 2006. WI 2006. IEEE/WIC/ACM
International Conference on, pages 957–960. IEEE, 2006.

[11] Manuel Crotti, Maurizio Dusi, Francesco Gringoli, and Luca Salgarelli. Traffic clas-
sification through simple statistical fingerprinting. In ACM SIGCOMM Computer
Communication, volume 37.1, pages 5–16. ACM, 2007.

[12] Gibson Aaron. The Tor Project: The bridge distribution database. https://

bridges.torproject.org/. Accessed: 2013-06.

[13] Dan Boneh. The decision Diffie-Hellman problem. pages 48–63, 1998.

13

A. Performance measurement: Data tables

obfsproxy Tor git-pull-tor git-pull-tor
with dummy over Tor

Round 1 9,148 41,397 48,439 1149,024

Round 2 8,897 33,579 46,051 failed

Round 3 10,36 36,296 149,709 1634,239

Round 4 9,415 34,494 55,331 1397,613

Round 5 12,392 37,71 69,373 1432,368

Round 6 9,944 39,396 45,571 failed

Round 7 10,253 39,268 50,99 failed

Round 8 10,376 30,968 69,997 1656,274

Round 9 10,248 38,3 72,127 failed

Round 10 9,746 31,912 52,733 failed

Average 10,0779 36,332 66,0321 1453,9036

Standard Deviation 0,966658557 3,475338033 31,11076262 206,1908215

Table 1: Duration of downloads in seconds: Download using a dummy obfsproxy, down-
load over Tor, git-pull-tor and git-pull-tor over Tor.

i

B. Client transport script

#! / b i n / b a s h

REMOTE=user@bridge.example.com:/tmp/gittor
GITDIR=/tmp/gittor

git −−git−dir=$GITDIR remote rm origin
git −−git−dir=$GITDIR remote add origin $REMOTE

git −−git−dir=$GITDIR prune

while true;
do
git −−git−dir=$GITDIR \
push −f origin refs/heads/∗:refs/remotes/origin/∗

git −−git−dir=$GITDIR \
fetch −f origin refs/heads/∗:refs/remotes/origin/∗

done

ii

C. Pluggable transport implementation for obfsproxy

C.1. Main code

””” T h i s modu le c o n t a i n s an i m p l e m e n t a t i o n o f t h e ’ g i t ’ t r a n s p o r t . ”””

from twisted.internet import reactor
import obfsproxy.common.log as logging
from obfsproxy.transports.base import BaseTransport
from obfsproxy.network.gitbuffer import GitBuffer
import string, random, thread, threading

log = logging.get obfslogger()

gitPollingThreadLock = threading.Lock()
KeepGitPollingAlive = False

class GitTransport(BaseTransport):
”””
I m p l e m e n t s t h e g i t p r o t o c o l . A p r o t o c o l t h a t s i m p l y p r o x i e s d a t a
w i t h o u t o b f u s c a t i n g them .
”””
def init (self, isBridge):
self.path = ’/tmp/gittor’
self.gitbuffer = GitBuffer(isBridge, self.path)

def handshake(self, circuit):
”””
The C i r c u i t ’ c i r c u i t ’ was c o m p l e t e d , and t h i s i s a go od t i m e
t o do y o u r t r a n s p o r t − s p e c i f i c h a n d s h a k e on i t s downs t ream s i d e .
”””
e n s u r e t h e r e i s o n l y one t h r e a d r u n n i n g
global gitPollingThreadLock
global KeepGitPollingAlive
KeepGitPollingAlive = False

#w a i t u n t i l t h e w h i l e l o o p i n t h e p o l l i n g t h r e a d i s done
gitPollingThreadLock.acquire()
KeepGitPollingAlive = True

s t a r t p o l l i n g i n t h e b a c k g r o u n d
thread.start new thread(self. thread gitPolling , (circuit ,))

iii

def thread gitPolling(self, circuit):
global gitPollingThreadLock
global KeepGitPollingAlive
try:
while KeepGitPollingAlive and not circuit.closed:
stack = self.gitbuffer.readStack()
while stack:
reactor.callFromThread(circuit.upstream.write, stack.pop())

self.gitbuffer.cleanup()
except Exception as e:
log.debug(" thread git polling Exception: %s" % (str(e)))

finally:
gitPollingThreadLock.release()

def receivedDownstream(self, data, circuit):
”””
Got d a t a from downs tream ; r e l a y them u p s t r e a m .
”””
circuit.upstream.write(data.read())

def receivedUpstream(self, data, circuit):
”””
Got d a t a from u p s t r e a m ; r e l a y them downs tream .
”””
self.gitbuffer.write(data.read())

class GitClient(GitTransport):
”””
G i t C l i e n t i s a c l i e n t f o r t h e ’ g i t ’ p r o t o c o l .
”””
def init (self):
super(GitClient , self). init (False)

class GitServer(GitTransport):
”””
G i t S e r v e r i s a s e r v e r f o r t h e ’ g i t ’ p r o t o c o l .
”””
def init (self):
super(GitServer , self). init (True)

iv

C.2. Helper code for encoding/decoding TCP streams in a Git repository

import pygit2, threading
import obfsproxy.common.log as logging

log = logging.get obfslogger()

class GitBuffer:
sequenceNumber = 0
lock = threading.Lock()

def init (self, isBridge , path):
GitBuffer.lock.acquire()

#The s u p p o r t f o r m u l t i p l e s i m u l t a n e o u s TCP c o n n e c t i o n s i s n o t
#c o m p l e t e d . C u r r e n t l y e a c h b r a n c h i s a s s i g n e d a s e q u e n c e number
#w h i c h n e e d s t o b e i n s y n c b e t w e e n c l i e n t and b r i d g e b u t f u t u r e
#v e r s i o n s s h o u l d u s e a u n i q u e i d e n t i f i e r .
GitBuffer.sequenceNumber += 1

#c o n s t a n t s
self.PAYLOAD FILENAME = ’payload’

i n i t r e p o s i t o r y
self.repo = pygit2.init repository(path, bare=True)
self.author = pygit2.Signature(’test’, ’test@example.com’)

I n i t i a l i z e t h e b r i d g e and c l i e n t q u e u e s w i t h an empty p a y l o a d
oid = self.repo.create blob(’’)
bld = self.repo.TreeBuilder()
bld.insert(self.PAYLOAD FILENAME , oid, pygit2.GIT FILEMODE BLOB)
treeid = bld.write()

#C o n f i g u r e v a r i a b l e s f o r r e f e r e n c i n g r e a d and w r i t e q u e u e s
if isBridge:
log.debug("GitBuffer: Running as Bridge.")
self.readRefName = "refs/remotes/origin/fromClient" + \
str(GitBuffer.sequenceNumber)

self.writeRefName = "refs/heads/fromBridge" + \
str(GitBuffer.sequenceNumber)

else: # i s C l i e n t
log.debug("GitBuffer: Running as Client.")
self.readRefName = "refs/remotes/origin/fromBridge" + \
str(GitBuffer.sequenceNumber)

v

self.writeRefName = "refs/heads/fromClient" + \
str(GitBuffer.sequenceNumber)

#The l a s t r e a d commit from t h e r e a d q u e u e .
I n i t i a l i z e a s None b e c a u s e b r a n c h has n ’ t b e e n c r e a t e d
self.readStackHead = None

#C r e a t e and empty commit on w r i t e q u e u e . T h i s i s r e q u i r e d
#b e c a u s e o f how r e a d S t a c k H e a d i s re− i n i t i a l i z e d .
self.repo.create commit(self.writeRefName ,
self.author, self.author, "msg", treeid, [])

GitBuffer.lock.release()

def cleanup(self):
wref = self.repo.lookup reference(self.writeRefName)
wref.delete()
try:
rref = self.repo.lookup reference(self.readRefName)
rref.delete()

except:
pass # b r i d g e d i d n o t s e t u p i t s r e f

def write(self, data):
#o b j e c t
oid = self.repo.create blob(data)

#t r e e
bld = self.repo.TreeBuilder()
bld.insert(self.PAYLOAD FILENAME , oid, pygit2.GIT FILEMODE BLOB)
treeid = bld.write()

#commit
parent = [self.repo.lookup reference(
self.writeRefName).resolve().target.hex]

self.repo.create commit(self.writeRefName ,
self.author, self.author, "msg", treeid, parent)

def readStack(self):
stack = []
#re− i n i t i a l i z e i f i t h asn ’ t b e e n done b e f o r e .
if not self.readStackHead:
try:
newest = self.repo.lookup reference(

vi

self.readRefName).resolve().target.hex
for commit in self.repo.walk(newest, pygit2.GIT SORT NONE):
oldest = commit.hex

self.readStackHead = oldest
log.debug("GitBuffer: re−initialize readStackHead %s" \
% (self.readStackHead))

except:
pass # no r e f w i t h name readRefName −− y e t

if self.readStackHead:
readRefHead = self.repo.lookup reference(
self.readRefName).resolve().target.hex

for commit in self.repo.walk(readRefHead , pygit2.GIT SORT NONE):
if commit.hex == self.readStackHead:
break

payload = self.repo[commit.tree[
self.PAYLOAD FILENAME].oid].read raw()

if len(payload) > 0:
stack.append(bytes(self.repo[commit.tree[
self.PAYLOAD FILENAME].oid].read raw()))

log.debug("GitBuffer: adding %s to stack" % (commit.hex))
self.readStackHead = readRefHead

return stack

vii

