
University of Amsterdam
System & Network Engineering

DDoS protection measures for
Electronic Payment Systems

Authors:

Joris Claassen and Sean Rijs

Supervisor:

Stefan Dusée, Equens

February 9, 2014

Abstract

This research was done within a month, in which it focussed on Distributed Denial of
Service (DDoS) prevention measures: whitelisting, robust Domain Name System (DNS)
resolving, and scrubbing. The e�ectiveness and the di�culty of implementation is
researched in the context of electronic payment systems for the payment processor
Equens. Electronic payment systems process �nancial transactions, which require only
small data to be sent. The scope does not include layer 7 attacks and focusses only on
high volume layer 3 attacks and the aforementioned measures.

The hypothesis for the e�ectiveness of whitelisting (i.e. only allowing packets to
the local network from a set of Internet Protocol (IP) addresses) is that it does not
scale during a high volume DDoS attack. If the link from the internet to the electronic
payment system network has to send more tra�c then the links capability it will drop
packets. A test environment was created to simulate the a simple electronic payment
system environment. In the test environment a high volume layer 3 attack was created
with a maximum of 14 attack computers, and one computer sending small legitimate
packets. The results show that, when using six attack computers generating 1 Gbps
each, on a 1 Gbps link it will drop drop 85% and 90% packets with whitelisting o� and
on respectively. Implementing whitelisting entails simply adding addresses to an Access
Control List (ACL) and is, therefore, easy to implement.

In order to provide robust DNS resolving two possible solutions are looked into:
distributing the DNS servers up to the end of the zone and changing the transport
protocol from the default User Datagram Protocol (UDP) to Transmission Control
Protocol (TCP). The former is looked into by a literature research and the latter by
testing. The DNS root servers have su�ered high volume DDoS attacks in the past. One
of the attacks was analysed by Internet Corporation for Assigned Names and Numbers
(ICANN) and proves that distributing DNS servers using anycast is the most successful
measure against high volume DDoS attacks. The implementation of distributing DNS
servers with anycast requires changes in the network design and implementation is
therefore considered di�cult. However distributing DNS servers can be outsourced by
a third party. The other solution of changing the transport protocol is tested with
the same test as the whitelist test, but the measurement is replaced by counting the
timeouts the requests returned when resolving an A record. The results show that using
six computers for the attack, its TCP timeouts are 97% as opposed to 14% when using
UDP. It is concluded that using TCP for resolving is most likely not e�ective.

The �nal prevention measure is scrubbing, which is simply cleaning DDoS attack
tra�c from the legitimate tra�c. Our research focusses on scrubbing centres designed
for high volume attacks. By using anycast it can change the tra�c path to a high tra�c
capacity data centre. It scrubs the DDoS tra�c (e.g. whitelisting) and sends it via a
tunnel to the destination network. As long as the tunnel endpoint address is not known
this solution works. However the solution is completely depending on the hiding of the
IP address. If it is known to the attacks, the high volume attack can simply be change
its target to that address, which e�ectively creates the aforementioned whitelisting test
results.

1

Contents

Abstract . 1

1 Introduction 4

1.1 Research question . 4

2 Whitelisting 5

2.1 Implementation di�culty . 5
2.2 E�ectiveness . 6

2.2.1 Test . 6
2.3 Sub-conclusion . 8

3 Robust DNS resolution 10

3.1 Implementation di�culty . 11
3.1.1 TCP and UDP resolving . 11
3.1.2 Anycasting . 11

3.2 E�ectiveness . 11
3.2.1 Comparing TCP and UDP . 11
3.2.2 Anycasting . 12

3.3 Sub-conclusion . 13

4 Scrubbing 14

4.1 Implementation di�culty . 14
4.2 E�ectiveness . 15

4.2.1 Test . 15
4.3 Sub-conclusion . 17

5 Conclusion 18

6 Future research 19

Appendices

A Setup whitelisting 20

A.1 Hardware . 20
A.2 Software . 20
A.3 Throughput . 21
A.4 The simulated attack . 21

A.4.1 Software . 21
A.4.2 Results . 22

B Setup DNS resolution comparing TCP and UDP 25

B.1 Software . 25

C Acro 27

2

D References 28

3

Introduction Chapter 1

1 | Introduction

Electronic payment systems are services provided by payment processors to enable ex-
change of �nancial transactions. Since �nancial transactions are a crucial part of the
society, its electronic payment systems require a high availability. Additionally �nancial
transactions require little data communication. Some parts of electronic payment sys-
tems are accessible from the internet. These parts are just as vulnerable to Distributed
Denial of Service (DDoS) attacks as any other service on the Internet.

There are di�erent kinds of DDoS attacks mainly split up in network (layer 3) and
application (layer 7) attacks. Mitigation of a layer 7 attack requires a specialised DDoS
Defense System (DDS) appliance, which is con�gured speci�cally for certain Denial of
Service (DoS) vulnerabilities in applications.

This report analyses measures that are available today to mitigate high volume (layer
3) DDoS attacks. The techniques to detect and prevent DDoS attacks vary in levels of
e�ectiveness, and ease of implementation.

1.1 Research question

The research question for this report is:

What is the implementation di�culty and how e�ective is a subset of DDoS

protection measures to keep electronic payment systems available?

The subset of DDoS protection measures consists of:

1. Whitelisting

2. Robust Domain Name System (DNS) resolution

3. Scrubbing

4

Whitelisting Chapter 2

2 | Whitelisting

In this chapter the implementation di�culty and e�ectiveness of whitelisting, i.e. only
accepting packets from a set of hosts, will be researched. The inverse is blacklisting,
i.e. dropping packets from a set of hosts.

With blacklisting the addresses of the Distributed Denial of Service (DDoS) attackers
are required. Getting these addresses is only possible after or during a DDoS attack, and
it is not trivial to distinguish malicious packets[1] from legitimate packets. Preventing is
always more feasible than waiting for an attack, therefore this chapter omits blacklisting.

Whitelisting is con�ned to the edge of an electronic payment system as shown in
�gure 2.1, which is generally the Access Control List (ACL) of a router or �rewall. The
ACL contains Internet Protocol (IP) addresses which are allowed to communicate with
the network.

Figure 2.1: Where the whitelist is assumed to be applied

2.1 Implementation di�culty

Implementing a whitelist is simple and quick. The administrators only specify the
addresses required for its network and apply it to its ACL.

For example: we want to implement a whitelist with iptables[2] to only allow IP
address block 145.100.0.0/15 and 2001:610::/32. The iptables commands shown in
listing 2.1 are required.

i p t a b l e s −A FORWARD − i e th0 −s 145 . 100 . 0 . 0/15 − j ACCEPT
i p t a b l e s −A FORWARD − i e th0 − j DROP
i p 6 t a b l e s −A FORWARD − i e th0 −s 2001 : 610 : : / 32 − j ACCEPT
i p 6 t a b l e s −A FORWARD − i e th0 − j DROP

Listing 2.1: Implementing a whitelist

Unfortunately being able to communicate with every host on the Internet can be
a requirement for electronic payment systems. As clients on the Internet need to be
connected as soon as possible with minimal tasks or could be connected with dynamic
IP addresses.

5

Whitelisting Chapter 2

2.2 E�ectiveness

To understand the e�ectiveness we assume a simple large volume attack on a network.
In this scenario the router has a 100 Mbps link protected by a whitelist. The attackers
simply sends tra�c more than 100 Mbps to the router. The router drops the attackers
packets once received, because they are not listed on the whitelists. However, the link
connected from the internet to the router only has the capacity to transmit 100 Mbps.
This could cause the port connected from the internet to the router to drop incoming
packets because its queues are full consequently making the electronic payment system
unavailable. Figure 2.2 shows the aforementioned scenario.

Figure 2.2: A large volume attack protected by whitelisting

2.2.1 Test

In order to test the scenario in �gure 2.2 we need to reproduce the situation from the
legitimate users and attackers up to the router. It is impossible to exactly reproduce
the same situation(e.g. hardware routers) with the available resources for this research.
However it is possible to create a similar environment on a smaller scale.

We created the test environment shown in �gure 2.3. The roles in �gure 2.2 are
similar to our test environment. The virtualisation host acts as the router, the target
Virtual Machine (VM) acts as the electronic payment system, and the Internet is the
switch and the desktops. The speci�cations of the used hardware and software are
described in more detail in appendix A.

Figure 2.3: Reproducing a large volume attack protected by whitelisting

The DDoS attack consists of 14 desktop computers which �oods packets to the VM.
The goal is to send 1 Gbps from every desktop over the virtualisation host. Although
Transmission Control Protocol (TCP) is used in the packets it is not a goal to do a
SYN attack on the end host.

There is one desktop computer taking the role of a legitimate users. To test if the
desktop can still communicate with the target VM we send a 1000 packets with the

6

Whitelisting Chapter 2

speed of 10 packets per second to the target. The sending packets use TCP and the
amount of unreceived TCP replies is our result value. There are the two parameters:

1. The amount of attackers that send tra�c

2. If whitelisting ACL is enabled or disabled

The returning TCP replies of the legitimate tra�c are shown in �gure 2.4. The
listing in A.2 on page 21 show more details of what commands are used.

Figure 2.4: Results of an attack using 1 Gbps links

The results shows that generating at least 6 Gbps tra�c to a 1 Gbps link causes
legitimate tra�c to be dropped and consequently not returning a reply. If we try a
similar test using only 100 Mbps links the results shown in �gure 2.5.

7

Whitelisting Chapter 2

Figure 2.5: Results of an attack using only 100 Mbps links

The cause of the packet loss can be seen in the switches port counter using the
Simple Network Management Protocol (SNMP). The counter ifOutDiscards is de�ned
in RFC1213[3] as:

"The number of outbound packets which were chosen to be discarded even

though no errors had been detected to prevent their being transmitted.

One possible reason for discarding such a packet could be to free up bu�er

space."

After �rst clearing the counters, a four minute attack with all 14 desktops using
1 Gbps links was performed. The ifOutDiscards counter show that the 272624186
outgoing packets are dropped. This makes it highly likely that the reason for the packet
drops is indeed full bu�er space in the port. However, it is unknown why packets start
to drop using relatively less desktops using only 100 Mbps links.

Listing 2.2 show the exact commands used. The same counters of all other ports
are shown in listing A.5 on page 22.

u s e r @ c l i e n t :~ $ snmpget −Os −c p u b l i c −v 1 sw i t c h a dd r e s s \
i fOu tD i s c a r d s . 21

i fOu tD i s c a r d s . 21 = Counter32 : 272661695

Listing 2.2: Switch drops packets on virtualisation host port

2.3 Sub-conclusion

It is very easy to implement a whitelist as an example implementation in listing 2.1
shows. However electronic payment systems could need new clients to be connected as
fast as possible without needing to edit the whitelist �rst.

If electronic payment systems decide its acceptable to edit the ACL before connecting
clients whitelisting still does not guarantee availability. The used test setup is not the

8

Whitelisting Chapter 2

same as �gure 2.1, but it gives an indication of the e�ectiveness during a real, larger
scale, attack. The conclusion is that it is highly probable that whitelisting has a low
e�ectiveness in a large volume DDoS attack.

9

Robust DNS resolution Chapter 3

3 | Robust DNS resolution

This chapter is about robust Domain Name System (DNS) resolution. Robust means:
keeping the service available. Note that robust DNS does not concern, con�dentiality
and integrity, which are also part of the general security attributes; Con�dentiality,
Integrity and Availability (CIA). DNS is one of the older protocols of the Internet. To
illustrate, at the time of development of DNS, designing the protocol against DDoS
attacks was not even remotely imaginable. Since DNS resolution requires a server to
accept requests it is vulnerable for a DDoS attack as shown in �gure 3.1.

History has proven[4] that distributing the DNS service is the most e�ective (i.e.
physical dispersion and IP anycast). However, an alternative could be that the use of
TCP instead of the default User Datagram Protocol (UDP) would improve the reliability
of the queries[5]. The arguments for using TCP instead are its inherit features: it can
retransmit packets when not received, and at every failed Acknowledgement (ACK) it
slows down the sending.

This chapter will look into two di�erent measures that provide possible robust DNS
resolution during a high volume DDoS attack.

1. Compare returning query answers TCP and UDP

2. What is required to implement IP anycast

Figure 3.1: DDoS attack on a DNS server

10

Robust DNS resolution Chapter 3

3.1 Implementation di�culty

This section describes the implementation di�culty of migrating from TCP to UDP and
implementing IP anycast.

3.1.1 TCP and UDP resolving

The di�culty of changing the DNS resolving transport protocol from UDP to TCP is that
it could be di�cult, depending on the resolver implementation. If it requires the clients
to change the standard library (e.g. libc in Linux) it would imply maintaining upcoming
security updates of the software library. However one could use a di�erent library for
their speci�c software consequently bypassing the standard library, which would not
require extra maintainability of software but protects only a speci�c application.

3.1.2 Anycasting

IP anycast is made possible with the Border Gateway Protocol (BGP) which is the
routing protocol on the Internet. Anycast makes it possible to advertise an IP network
(e.g. 145.100.0.0/15), consequently enabling one IP address to resolve to di�erent
servers depending on the source of the sending IP[6].

Implementing anycast is complicated. It requires multiple servers, and preferably on
geographically di�erent locations. The most important requirement is the distribution of
both the software and the network services. All the servers use the same IP network and
the end user should be able to connect to the nearest server. Implementation therefore
requires changes in the application, and the routers that advertise the network.

3.2 E�ectiveness

This section looks into the e�ectiveness of BGP anycast and migrating from TCP to
UDP.

3.2.1 Comparing TCP and UDP

To test the two transport protocols the same attack is launched as described in �gure
2.2 on page 6. During the attack 1000 queries for a single A record is send at a speed
of 10 queries per second. The test consists of two parameters:

1. The amount of attackers that send tra�c

2. Using TCP or UDP

The results of this test are shown in 3.2 showing that TCP does not scale well during
a DDoS attack. Two possible arguments for it can be: packets are retransmitted if no
ACK is received, and at every failed ACK it slows down the �ow of sending packets.
The former argument only generates more tra�c, as more packets are sent over the
network it congests the link with even more packets which causes more packets to be
dropped. The latter argument does not matter as the DDoS has a constant rate of
tra�c.

11

Robust DNS resolution Chapter 3

Figure 3.2: Comparison of query timeouts between TCP or UDP

3.2.2 Anycasting

History has proven that anycast is an e�ective measure against DDoS attacks on DNS
servers. For example: the DNS root servers were under a DDoS attacks in both 2002
and 2007. After the attacks in 2002, further measures were taken to prevent outages.
One of the main components of these measures was the implementation of anycast on
most of the root servers as shown in �gure 3.3. The servers on which anycast was not
implemented su�ered the highest outages during attacks in 2007[4].

RFC 4786 (Anycast Best Current Practices)[6] also suggests the use of anycast to
mitigate DDoS attacks in the "Security Considerations" chapter.

12

Robust DNS resolution Chapter 3

Figure 3.3: Physical dispersion and anycast

3.3 Sub-conclusion

To conclude this chapter we need to come back to the beginning of this chapter;
availability of the DNS service. In this case: the availability during a DDoS attack
should be as high as possible, ideally with no impact for the end-user of the service.

Changing the transport protocols from the default UDP to TCP causes the DNS
resolution to be less available.

The only measure which has been proven to provide more availability is to distribute
an already distributed service like DNS even further, i.e. up to the endpoints of the
DNS tree. Technical measures to mitigate DDoS attacks on the DNS service can be
taken by the owner of the service, or they can be bought from a third party which owns
a su�cient infrastructure to provide (global) distribution.

13

Scrubbing Chapter 4

4 | Scrubbing

The term scrubbing in the context of DDoS attacks applies to the cleaning of attack
tra�c. Since DDoS attacks come in all shapes and sizes, scrubbing does as well. There
are DDoS Defense System (DDS)s which work in line with the current network topology,
reinforcing them against layer 7 attacks. These appliances can be �ne-tuned for the
environment they are protecting.

A scrubbing service is usually bought from a third party, as it is not feasible to
maintain an infrastructure required to mitigate the amounts of bandwidth a DDoS
attack generates. Scrubbing services can handle vast amounts of data from all over
the world and are often distributed using anycast. Scrubbing services have existed since
2003[7], as the urge for DDoS protection began to rise after attacks on the DNS root
servers[4].

4.1 Implementation di�culty

Both DDSs and Scrubbing services make use of several DDoS mitigation techniques:
most fall back to the principles of blackholing and sinkholing. Blackholing refers to
"black holes" as in astronomy. Black holes are places where network packets are
dropped, without informing the sender of the packet that it has not arrived. In scrub-
bing centres a technique called "black hole �ltering" is applied, which drops packets at
layer 3.

Sinkholing refers to analysing data containing a DDoS attack to distinguish attack
packets from legitimate packets. This can be done by saving data on large data volumes
in the data centre where the scrubbing centre resides, or by making use of a network
telescope or a darknet. Saving the data in the data centre is quite straightforward, and
allows for inspection after or even during the attack.

A network telescope[8] or a darknet[9] are two names for the same thing; namely
(a set of) probes to accept data packets in a "dark", unused part of the Internet. The
information they gather is often used by research institutes to get a better overview in
what sort of attacks are in the wild (visualised in �gure 4.1).

The high volume tra�c sent during a DDoS attack causes a lot of replies to be sent
from the network that is under attack. These replies are sent to spoofed addresses.
Some of these spoofed addresses may be part of the network telescope. The data
collected from these probes may contain valuable information about DDoS attacks.
Because it is not limited to just a attack on a single network, it can even gather insight
about other networks that are under attack.

14

Scrubbing Chapter 4

Figure 4.1: Network telescope

When a company tries to protect itself from DDoS attacks they have three options:
Implementing a DDS, contract a third party scrubbing service, or do both. Doing
nothing would be taking a huge service availability risk.

Implementing a DDS is about as hard as implementing a �rewall in an infrastructure;
install and then con�gure the appliance to match the speci�cations of the network.

Scrubbing services rely on routes in the network, that can be changed using BGP
if necessary. In addition to routes, there also has to be a tunnel from the scrubbing
centre to the network that is to be protected. When all the data is sent through the
scrubbing centre both black- and sinkholing is done. The �ltered tra�c is then passed
through the tunnel, after which the server sends out the replies back to the legitimate
addresses.

4.2 E�ectiveness

The e�ectiveness of scrubbing depends on the attack. A DDS inside a local network
might be a very good mitigation strategy if a company is experiencing layer 7 attacks.
But when it is experiencing a high volume attack the same DDS stands no chance,
simply because the ingress link is fully saturated with tra�c.

Because of the distributed way a scrubbing service is set up, it can handle vast
amounts of data without losing packets. It can then sort out the "good" packets using
a multitude of measures. Our hypothesis is that the tunnel endpoint is still vulnerable
to high volume attacks, because the scrubbing centre needs a endpoint to send the
�ltered tra�c to. It should be possible to hide this endpoint by dropping all incoming
and outgoing packets, while whitelisting the tunnel endpoint at the border router of the
company.

4.2.1 Test

To test our hypothesis we will do a series of traceroute tests, to see whether we can
hide the tunnel endpoint. Figure 4.2 shows the test environment used to simulate these
tests.

15

Scrubbing Chapter 4

Figure 4.2: Test environment

In listing 4.1 an Internet Control Message Protocol (ICMP), UDP and TCP tracer-
oute are shown respectively, with no whitelist enabled. All the routers in between
including the tunnel endpoints reply, consequently making them known.

u s e r @ c l i e n t :~ $ t r a c e r o u t e 1 7 2 . 1 6 . 1 . 2
t r a c e r o u t e to 1 7 2 . 1 6 . 1 . 2 (1 7 2 . 1 6 . 1 . 2) , 30 hops max , 60 byte packe t s
1 1 7 2 . 1 6 . 1 . 1 (1 7 2 . 1 6 . 1 . 1) 0 .267 ms 0 .255 ms 0 .246 ms
2 1 7 2 . 1 6 . 1 . 2 (1 7 2 . 1 6 . 1 . 2) 0 .401 ms 0 .356 ms 0 .338 ms
u s e r @ c l i e n t :~ $ t r a c e r o u t e −U 172 . 1 6 . 1 . 2
t r a c e r o u t e to 1 7 2 . 1 6 . 1 . 2 (1 7 2 . 1 6 . 1 . 2) , 30 hops max , 60 byte packe t s
1 1 7 2 . 1 6 . 1 . 1 (1 7 2 . 1 6 . 1 . 1) 0 .293 ms 0 .268 ms 0 .250 ms
2 1 7 2 . 1 6 . 1 . 2 (1 7 2 . 1 6 . 1 . 2) 0 .358 ms 0 .342 ms 0 .326 ms
u s e r @ c l i e n t :~ $ sudo t r a c e r o u t e −T 172 . 1 6 . 1 . 2
t r a c e r o u t e to 1 7 2 . 1 6 . 1 . 2 (1 7 2 . 1 6 . 1 . 2) , 30 hops max , 60 byte packe t s
1 1 7 2 . 1 6 . 1 . 1 (1 7 2 . 1 6 . 1 . 1) 0 .235 ms 0 .207 ms 0 .183 ms
2 1 7 2 . 1 6 . 1 . 2 (1 7 2 . 1 6 . 1 . 2) 0 .347 ms 0 .326 ms 0 .320 ms

Listing 4.1: Whitelist disabled

Listing 4.2 shows the ip(6)tables commands used to implement the whitelist.

i p t a b l e s −A INPUT − i vmbr1 − j DROP
i p 6 t a b l e s −A INPUT − i vmbr1 − j DROP
i p t a b l e s −A FORWARD − i vmbr1 −s 172 . 16 . 1 . 0 /24 − j ACCEPT
i p t a b l e s −A FORWARD − i vmbr1 − j DROP
i p 6 t a b l e s −A FORWARD − i vmbr1 −s 2001 : 610 : : / 32 − j ACCEPT
i p 6 t a b l e s −A FORWARD − i vmbr1 − j DROP
i p t a b l e s −A OUTPUT − i vmbr1 − j DROP
i p 6 t a b l e s −A OUTPUT − i vmbr1 − j DROP

Listing 4.2: Implementing a whitelist

In listing 4.3 an ICMP, UDP and TCP traceroute are shown again, but without the
whitelist enabled.

u s e r @ c l i e n t :~ $ t r a c e r o u t e 1 7 2 . 1 6 . 1 . 2
t r a c e r o u t e to 1 7 2 . 1 6 . 1 . 2 (1 7 2 . 1 6 . 1 . 2) , 30 hops max , 60 byte packe t s
1 ∗ ∗ ∗
2 1 7 2 . 1 6 . 1 . 2 (1 7 2 . 1 6 . 1 . 2) 0 .309 ms 0 .324 ms 0 .317 ms
u s e r @ c l i e n t :~ $ t r a c e r o u t e −U 172 . 1 6 . 1 . 2
t r a c e r o u t e to 1 7 2 . 1 6 . 1 . 2 (1 7 2 . 1 6 . 1 . 2) , 30 hops max , 60 byte packe t s
1 ∗ ∗ ∗
2 1 7 2 . 1 6 . 1 . 2 (1 7 2 . 1 6 . 1 . 2) 0 .519 ms 0 .530 ms 0 .525 ms

16

Scrubbing Chapter 4

u s e r @ c l i e n t :~ $ sudo t r a c e r o u t e −T 172 . 1 6 . 1 . 2
t r a c e r o u t e to 1 7 2 . 1 6 . 1 . 2 (1 7 2 . 1 6 . 1 . 2) , 30 hops max , 60 byte packe t s
1 ∗ ∗ ∗
2 1 7 2 . 1 6 . 1 . 2 (1 7 2 . 1 6 . 1 . 2) 0 .386 ms 0 .352 ms 0 .394 ms

Listing 4.3: Whitelist enabled

As can be seen in these results, it is possible to hide a tunnel endpoint from the rest
of the Internet.

4.3 Sub-conclusion

Depending on the threat faced by DDoS attacks on the network a di�erent form of
scrubbing can be chosen. If there is only a layer 7 threat for one or more applications, the
most e�ective approach would be to install a custom con�gured DDS on the premises.

In case of a high volume attack, it would make more sense to contract a third party
scrubbing service and let them cope with the huge amounts of tra�c. The �ltered
tra�c can then be tunnelled through to the company network, and data can be sent
out through the normal IP routes. Because the tunnel has an endpoint that needs
to function at all times, it is crucial that this endpoint is hidden during both normal
operation and while being under attack.

17

Conclusion Chapter 5

5 | Conclusion

After analysing the three di�erent kind of measures none of the solutions provide com-
plete DDoS mitigation against high volume attacks. A brief summary of our sub-
conclusions:

1. Whitelisting: does not provide high volume DDoS mitigation

2. Robust DNS resolution: distributing the DNS of the network reduces the e�ects
of a high volume DDoS attack

3. Scrubbing: a scrubbing centre is e�ective against a high volume DDoS attack, as
long as the tunnel end-point remains hidden to the attacker

A proven and successful measure against high volume DDoS attack are distributed
systems, as the DNS root servers have proven multiple times in the past. It might not be
feasible to distribute the entire environment depending on the complexity of a system.
An on-demand scrubbing centre, distributed DNS service and correctly implemented
whitelisting on tunnel endpoints should provide an acceptable level of availability.

18

Future research Chapter 6

6 | Future research

This report focused on a subset of measures against high volume layer 3 attacks and
how it e�ects the availability. Electronic payment systems include services that use layer
7 protocols. A combination of the two, also known as a smoke and mirrors attack, could
be an other interesting attack vector.

When combining layer 3 with layer 7 attacks a local DDS might not be able to process
all the attack data. This forces it to let it pass, consequently exposing applications to
possible layer 7 Denial of Service (DoS) attacks. More attack vectors could arise when
including other security attributes such as con�dentiality and integrity.

Figure 2.5 showed that using 100 Mbps in our tests gave relatively sooner packets
loss using less attack desktops. It is unknown what the exact cause is. It could for
instance be researched if this might has something to do with the switches internals
or something else. However full access to the switches code is probably required to be
certain of the cause.

Setting up DDoS test setups is not trivial. In this research, most time was spent
creating a DDoS setup. It is not known what the best practices could be in order
to create a deterministic DDoS setup. One could de�ne a setups in order for future
research to spend less time in creating DDoS setups.

19

Setup whitelisting Appendix A

A | Setup whitelisting

In this appendix the test setup we used for the whitelisting chapter will be described.

A.1 Hardware

Manufacturer Dell
Model PowerEdge R210 II
CPU 1x Intel(R) Xeon(R) CPU E3-1220L V2 @ 2.30GHz
Memory 4x DM0KY - 2GB DIMM, 1333MHz
Ethernet 2x Broadcom Corporation NetXtreme II BCM5716 Gigabit

Table A.1: Virtual host server running the target VM

CPU 1-2
Memory 256-512 MB
Ethernet virtio

Table A.2: Target VM running on KVM using dynamic resources

Manufacturer Dell
Model Optiplex 7010
CPU 1x Intel(R) Core(TM) i5-3570S CPU @ 3.10GHz
Memory 3x 531R8 - 4G DIM, 1600MHz
Ethernet 1x Intel Corporation 82579LM Gigabit

Table A.3: Attacking desktops machines

Manufacturer Dell
Model PowerConnect 6224
Ports 24x Gigabit ethernet ports

Table A.4: Gigabit switch

A.2 Software

This section only shows software versions that are relative to the scenario.

20

Setup whitelisting Appendix A

Operating System Ubuntu Linux 13.10 server 64-bit
Linux kernel 3.11
qemu 1.5.0
libvirt-bin 1.1.1

Table A.5: Virtual host server using KVM

Operating System Debian 7.3 64-bit
Linux kernel 3.2

Table A.6: Target VM

A.3 Throughput

This is a throughput test with the command iperf [10]

%desktop machine to the t a r g e t
−−
Se r v e r l i s t e n i n g on TCP po r t 5001
TCP window s i z e : 85 .3 KByte (d e f a u l t)
−−
[4] l o c a l :5001 connected wi th 172 . 1 6 . 1 . 6 5 : 5 6342
[ID] I n t e r v a l T r an s f e r Bandwidth
[4] 0.0−10.0 s e c 1 .08 GBytes 930 Mbits / s e c

Listing A.1: iperf throughput output from an attack desktop to the target VM

A.4 The simulated attack

In short a TCP port that the target is not listening on was attacked, therefore not
creating a SYN attack but still saturating the ingress link. A program called hping [11]
packets was used to generate and send the attack.

A.4.1 Software

To generate the attack tra�c the hping parameters shown in listing A.2 were used. It
sends TCP packets with 8000 byte data to the target on destination port 5001, which
the target is not listening on.

p a r a l l e l −s sh −h nodes \
sudo hp ing3 −−f l o o d −S 172 . 1 6 . 1 . 1 0 −−d e s t p o r t 5001 \
−−data 8000

Listing A.2: hping command to generate an attack on port 5001

To test the packet loss on a whitelisted address the hping parameters shown in listing
A.3 were used during a DDoS attack.

sudo hp ing3 −c 1000 −− f a s t 1 7 2 . 1 6 . 1 . 1 0

Listing A.3: hping command to test packet loss whitelisted desktop

The iptables commands in listing A.4 was used to create a whitelisting ACL to allow
one desktop sending legitimate tra�c to the attacked server.

21

Setup whitelisting Appendix A

i p t a b l e s −A FORWARD − i vmbr1 −s 172 . 16 . 1 . 10/32 − j ACCEPT
i p t a b l e s −A FORWARD − i vmbr1 −s 172 . 16 . 1 . 201/32 − j ACCEPT
i p t a b l e s −A FORWARD − i vmbr1 − j DROP

Listing A.4: Implementing a whitelist

A.4.2 Results

These results show the counters of the switch and server and the processor load of only
the switch. Listing A.5 show all discarded packets of every port on the switch egress
and ingress respectively.

u s e r @ c l i e n t :~ $ snmpwalk −Os −c p u b l i c −v 1 sw i t c h a dd r e s s \
i fOu tD i s c a r d s

i fOu tD i s c a r d s . 1 = Counter32 : 3248
i fOu tD i s c a r d s . 2 = Counter32 : 3256
i fOu tD i s c a r d s . 3 = Counter32 : 3250
i fOu tD i s c a r d s . 4 = Counter32 : 3259
i fOu tD i s c a r d s . 5 = Counter32 : 3251
i fOu tD i s c a r d s . 6 = Counter32 : 3246
i fOu tD i s c a r d s . 7 = Counter32 : 0
i fOu tD i s c a r d s . 8 = Counter32 : 4153
i fOu tD i s c a r d s . 9 = Counter32 : 3246
i fOu tD i s c a r d s . 10 = Counter32 : 3244
i fOu tD i s c a r d s . 11 = Counter32 : 0
i fOu tD i s c a r d s . 12 = Counter32 : 0
i fOu tD i s c a r d s . 13 = Counter32 : 3249
i fOu tD i s c a r d s . 14 = Counter32 : 3247
i fOu tD i s c a r d s . 15 = Counter32 : 3684
i fOu tD i s c a r d s . 16 = Counter32 : 3243
i fOu tD i s c a r d s . 17 = Counter32 : 3244
i fOu tD i s c a r d s . 18 = Counter32 : 3496
i fOu tD i s c a r d s . 19 = Counter32 : 0
i fOu tD i s c a r d s . 20 = Counter32 : 3251
i fOu tD i s c a r d s . 21 = Counter32 : 272661695
i fOu tD i s c a r d s . 22 = Counter32 : 3248

u s e r @ c l i e n t :~ $ snmpwalk −Os −c p u b l i c −v 1 sw i t c h a dd r e s s \
i f I n D i s c a r d s

i f I n D i s c a r d s . 1 = Counter32 : 19499611
i f I n D i s c a r d s . 2 = Counter32 : 19431655
i f I n D i s c a r d s . 3 = Counter32 : 19553175
i f I n D i s c a r d s . 4 = Counter32 : 19548517
i f I n D i s c a r d s . 5 = Counter32 : 19553610
i f I n D i s c a r d s . 6 = Counter32 : 19554255
i f I n D i s c a r d s . 7 = Counter32 : 0
i f I n D i s c a r d s . 8 = Counter32 : 263
i f I n D i s c a r d s . 9 = Counter32 : 19523887
i f I n D i s c a r d s . 10 = Counter32 : 19554357
i f I n D i s c a r d s . 11 = Counter32 : 0
i f I n D i s c a r d s . 12 = Counter32 : 0
i f I n D i s c a r d s . 13 = Counter32 : 19380978
i f I n D i s c a r d s . 14 = Counter32 : 19531682
i f I n D i s c a r d s . 15 = Counter32 : 42

22

Setup whitelisting Appendix A

i f I n D i s c a r d s . 16 = Counter32 : 19524560
i f I n D i s c a r d s . 17 = Counter32 : 19264616
i f I n D i s c a r d s . 18 = Counter32 : 1185
i f I n D i s c a r d s . 19 = Counter32 : 0
i f I n D i s c a r d s . 20 = Counter32 : 19519823
i f I n D i s c a r d s . 21 = Counter32 : 117
i f I n D i s c a r d s . 22 = Counter32 : 19182124

Listing A.5: SNMP ifOutDiscards and ifInDiscards of all switch ports

sw i t c h#show p r o c e s s cpu

Memory U t i l i z a t i o n Report

s t a t u s by t e s
−−−−−− −−−−−−−−−−

f r e e 26754320
a l l o c 188061760

CPU U t i l i z a t i o n :

PID Name 5 Sec 1 Min 5 Min
−−−
335 f c10 tNetTask 0.00% 0.02% 0.00%
354 c0 f0 i p n e t d 0.00% 0.04% 0.00%
355 e690 tXbdSe r v i c e 0.00% 0.06% 0.00%
35796d0 osap iT imer 1.11% 0.89% 1.09%
366 aca0 bcmL2X .0 0.15% 0.20% 0.30%
3680130 bcmCNTR.0 0.15% 0.34% 0.20%
36b3600 bcmTX 0.00% 0.06% 0.01%
3caa800 bcmRX 0.00% 0.06% 0.07%
3 ee0a30 MAC Send Task 0.00% 0.02% 0.00%
3 ee9 f30 MAC Age Task 0.00% 0.02% 0.00%
4a6a5a0 bcmLINK .0 0.47% 0.37% 0.35%
4ca7050 cpuUt i lMon i to rTask 0.15% 0.02% 0.00%
516b880 tL7Timer0 0.00% 0.06% 0.00%
5191160 osapiMonTask 0.00% 0.00% 0.09%
5 e7fd60 s imPts_task 0.00% 0.14% 0.15%
62b4280 d t lTa sk 0.00% 0.14% 0.06%
6320 e70 tEmWeb 0.00% 0.10% 0.03%
6401b70 hapiRxTask 0.00% 0.06% 0.02%
6966950 DHCP snoop 0.00% 0.04% 0.00%
69 f c e60 Dynamic ARP I n s p e c t i o n 0.00% 0.04% 0.00%
6a07250 SNMPTask 0.00% 0.00% 0.02%
763dd40 dot1s_t imer_task 0.63% 0.41% 0.48%
8617240 snoopTask 0.15% 0.02% 0.00%
90142b0 t rapTask 0.00% 0.00% 0.03%
95d8290 ipMapForwardingTask 0.00% 0.06% 0.15%
cbc8bb0 l l dpTa sk 0.31% 0.16% 0.30%
d873850 DHCP C l i e n t Task 0.00% 0.02% 0.00%
d8a8f00 i sdpTask 0.00% 0.04% 0.00%
e0aa6b0 RMONTask 0.15% 0.09% 0.01%
e0b6d50 boxs Req 0.00% 0.05% 0.00%

23

Setup whitelisting Appendix A

e5e7 f50 sshd 0.00% 0.06% 0.00%
e61be60 sshd [0] 0.00% 0.00% 0.43%

−−−
Tota l CPU U t i l i z a t i o n 3.27% 3.59% 3.79%

Listing A.6: CPU load on switch

em2 L ink encap : E the rne t HWaddr d4 : ae : 5 2 : b f : e3 : d5
i n e t 6 addr : f e80 : : d6ae : 52 f f : f e b f : e3d5 /64 Scope : L ink
UP BROADCAST RUNNING MULTICAST MTU:1500 Met r i c : 1
RX packe t s :4452765 e r r o r s : 0 dropped : 7 o v e r r u n s : 0 frame : 0
TX packe t s :278225 e r r o r s : 0 dropped : 0 o v e r r u n s : 0 c a r r i e r : 0
c o l l i s i o n s : 0 t xqueue l e n :1000
RX by t e s :6118904480 (6 . 1 GB) TX by t e s :18040839 (18 . 0 MB)

Listing A.7: ifcon�g output of the virtualisation host port to the switch

Ping results during a DDoS attack while whitelisting is on.

24

Setup DNS resolution comparing TCP and UDP Appendix B

B | Setup DNS resolution com-
paring TCP and UDP

This appendix describes the test setup used for comparing UDP with TCP availability.
The same hardware and software is used as described in appendix A except for the DNS
query tra�c and the DNS resolver at the target VM.

B.1 Software

Table B.1 shows the related software used for the target VM.

Operating System Debian 7.3 64-bit
Linux kernel 3.2
DNS resolver Unbound 1.4.17

Table B.1: Target VM

The goal to measure the timeouts is to generate 10 queries per second and stop
after a total of 1000 queries. Listing B.1 shows the Python script generating the queries
and listing B.2 shows the shell command to start the script and measure the timeouts.

#!/ u s r / b i n / python
impor t dns . r e s o l v e r
impor t t ime
impor t t h r e a d i n g

c l a s s ThreadedC la s s (t h r e a d i n g . Thread) :
d e f run (s e l f) :

g l o b a l count
my_reso lve r = dns . r e s o l v e r . R e s o l v e r ()
my_reso lve r . namese r ve r s = [' 1 7 2 . 1 6 . 1 . 1 0 0 ']
my_reso lve r . l i f e t i m e = 30
t r y :

#change boo l ean " tcp " f o r sw i t c h
answer = my_reso lve r . que ry ('www. os3 . n l ' , \

tcp=Fa l s e)
f o r r da t a i n answer :

p r i n t r da t a
excep t dns . r e s o l v e r . Timeout :

p r i n t "Thread t imed out . "

25

Setup DNS resolution comparing TCP and UDP Appendix B

s t a r t_t ime = t ime . t ime ()
i n t e r v a l = 0 .1

f o r i i n range (1000) :
t = ThreadedC la s s ()
t . s t a r t ()
t ime . s l e e p (i n t (s t a r t_t ime + i ∗ i n t e r v a l − t ime . t ime ()))

Listing B.1: Python code to generate the queries

u s e r @ c l i e n t :~ $ python dns_tes t . py | g rep \
"Thread t imed out . " | wc − l

Listing B.2: Bash command to count the amount of timeouts

26

Acro Appendix C

C | Acro

DDoS Distributed Denial of Service

DoS Denial of Service

TCP Transmission Control Protocol

ACK Acknowledgement

UDP User Datagram Protocol

DNS Domain Name System

VM Virtual Machine

IP Internet Protocol

BGP Border Gateway Protocol

ACL Access Control List

CIA Con�dentiality, Integrity and Availabil-
ity

ICMP Internet Control Message Protocol

SNMP Simple Network Management Pro-
tocol

DDS DDoS Defense System

ICANN Internet Corporation for Assigned
Names and Numbers

27

References AppendixD

D | References

[1] N. Jeyanthi, N. Iyengar, P. C. M. Kumar, and K. A, �An Enhanced Entropy
Approach to Detect and Prevent DDoS in Cloud Environment,� 2013. http:

//www.ijcnis.org/index.php/ijcnis/article/view/367.

[2] �The net�lter.org project (a.k.a. iptables).� http://www.netfilter.org/.

[3] K. McCloghrie and M. Rose, �Management Information Base for Network Manage-
ment of TCP/IP-based internets: MIB-II,� 1991. http://www.ietf.org/rfc/

rfc1213.

[4] �Factsheet: Root server attack on 6 february 2007.� http://www.icann.org/en/
about/learning/factsheets/factsheet-dns-attack-08mar07-en.pdf.

[5] K. Park, V. S. Pai, L. L. Peterson, and Z. Wang, �A Taxonomy of DDoS Attack
and DDoS Defense Mechanisms,� 2004. http://static.usenix.org/events/

osdi04/tech/full_papers/park/park.pdf.

[6] J. Abley, A. Canada, and K. Lindqvist, �Anycast BCP,� 2006. http://www.ietf.
org/rfc/rfc4786.

[7] �Prolexic technologies,� https://www.prolexic.com/company.html.

[8] CAIDA, �The ucsd network telescope.� http://www.caida.org/projects/

network_telescope/.

[9] Team CYMRU, �The darknet project.� https://www.team-cymru.org/

Services/darknets.html.

[10] �iperf website.� http://iperf.fr/.

[11] �hping website.� http://www.hping.org/.

28

http://www.ijcnis.org/index.php/ijcnis/article/view/367
http://www.ijcnis.org/index.php/ijcnis/article/view/367
http://www.netfilter.org/
http://www.ietf.org/rfc/rfc1213
http://www.ietf.org/rfc/rfc1213
http://www.icann.org/en/about/learning/factsheets/factsheet-dns-attack-08mar07-en.pdf
http://www.icann.org/en/about/learning/factsheets/factsheet-dns-attack-08mar07-en.pdf
http://static.usenix.org/events/osdi04/tech/full_papers/park/park.pdf
http://static.usenix.org/events/osdi04/tech/full_papers/park/park.pdf
http://www.ietf.org/rfc/rfc4786
http://www.ietf.org/rfc/rfc4786
https://www.prolexic.com/company.html
http://www.caida.org/projects/network_telescope/
http://www.caida.org/projects/network_telescope/
https://www.team-cymru.org/Services/darknets.html
https://www.team-cymru.org/Services/darknets.html
http://iperf.fr/
http://www.hping.org/

	Abstract
	Introduction
	Research question

	Whitelisting
	Implementation difficulty
	Effectiveness
	Test

	Sub-conclusion

	Robust DNS resolution
	Implementation difficulty
	TCP and UDP resolving
	Anycasting

	Effectiveness
	Comparing TCP and UDP
	Anycasting

	Sub-conclusion

	Scrubbing
	Implementation difficulty
	Effectiveness
	Test

	Sub-conclusion

	Conclusion
	Future research
	Setup whitelisting
	Hardware
	Software
	Throughput
	The simulated attack
	Software
	Results

	Setup DNS resolution comparing TCP and UDP
	Software

	Acro
	References

