
MSc System and Network Engineering
Research Project 2

Security By Default
A Comparative Security Evaluation of Default Configurations

Bernardus A. Jansen, BSc
Bernardus.Jansen@os3.nl

July 12, 2018

Supervisors:
Dr.-Ing. T. Fiebig (TU Delft)
R. Koning, MSc

Assessor:
Prof. dr. ir. C.T.A.M. de Laat

Technische Universiteit Delft

Universiteit van Amsterdam

Abstract

Misconfiguration of network services is a serious problem on the Internet.
Defaults of software packages are often meant to get the user up and running
as soon as possible, or to demonstrate a working setup out-of-the-box. Security
issues that may be deemed misconfigurations, could stem from insecure default
settings. Users unfamiliar with the software they wish to run may find the
default supplied configuration and available settings intimidating, and only make
minor changes to modify the configuration to their desired setup. As such, the
majority of the default settings of configurations supplied with software packages
are expected to remain in large numbers of active systems. In this research we
propose an automated system to automatically test a number of commonly
used internet services on a range of platforms. We then use this framework to
automatically test the default configurations of a diverse set of network services
when installed on a range of platforms. We find that the security posture of
the default configurations differs both between different platforms, as well as
between different applications providing the same functionality.

1

Contents

1 Introduction 3

2 Background 3
2.1 Misconfiguration . 4
2.2 Automated Testing . 4

3 Methodology 5
3.1 Configuration Testing Framework . 6
3.2 Software and Tests . 6

3.2.1 MySQL . 7
3.2.2 DNS Resolvers . 8
3.2.3 NTP . 8
3.2.4 MQTT . 8
3.2.5 Mail Transfer Agents . 9

3.3 Ethical Considerations . 9

4 Results 9
4.1 MySQL . 9
4.2 DNS . 10
4.3 NTP . 10
4.4 MQTT . 10
4.5 Mail Transfer Agents . 11

5 Discussion 11
5.1 Limitations . 12

6 Related Work 12

7 Conclusion 12

2

1 Introduction

Year after year, the number of people with access to the Internet increases. With
the availability of low-cost single board computers, virtual private servers and home
network attached storage solutions, running Internet facing services is accessible to
many of those Internet users. DIY minded individuals may for example choose to
run their own mail server or setup their own Internet of Things network. Even for
seasoned administrators, keeping up to date with updated applications or entirely
new services may prove to be a challenge [22].

When running Internet services, usually a set of settings is required for the service
to be able to function. A mail server for example requires knowledge of the domains
it is serving mail for and the ports and interfaces it should listen on for connections.
Such a set of settings is called a configuration.

In order to not burden the user with having to specify every single setting required
for operation, most software bundles a default configuration with all or a number of
settings preconfigured in a default configuration. When installing software a user is
unfamiliar with, they may find it daunting to dive into the default configuration of
the application, evaluate all settings and change them to their preference. As such,
default settings are likely to remain in a running system for an extended period of
time, or perhaps indefinitely.

To get a better understanding of the influence of software distributors on the
security posture of default configurations, we propose a framework to quickly asses
and compare default configurations across distributions and apply it to a sample
selection of distributions and software packages.
Research Questions: Specifically, we investigate the following research questions:

• What is a suitable metric to describe the security posture of default configura-
tions for Internet services?

• What role do distributors play in the quality of default configurations for Internet
services?

The second research question is additionally subdivided as follows:

• Are there significant differences in security performance between distributors?
• Which factors influence the security performance of software distributors?

Structure: The remainder of this document is structured as follows: In Section 2,
we introduce the necessary background on software configurations and automated
testing. We describe our testing methodology along with the tested applications in
Section 3. We then present our results in Section 4, and discuss them in Section 5,
where we also describe the limitations of our work. We compare our approach to
related work in Section 6, and finally conclude in Section 7, where we also discuss
opportunities for further work.

2 Background

Incorrectly configured Internet services can lead to significant security risks. The
Open Web Application Security Project has listed misconfiguration of software in its
Top 10 of most critical web application security risks for four out of five times it has
been published [27, 26, 24, 25].

3

2.1 Misconfiguration

Misconfigured software can pose a risk to the operator and users of the service for
example by opening the server up to users or hosts that should not be able to connect
to the service. In some cases, misconfigured software can even affect other Internet
users unrelated to the misconfigured system. This can occur for example when an
unintentionally open DNS resolver is used to amplify traffic in a denial of service
attack or when a mail server configured as an open relay is used to spread spam
messages.

In his 2017 dissertation [15], Fiebig defines a misconfiguration as follows: ”A
security misconfiguration has occurred, if the way an Internet service is deployed,
i.e., configured, enables an attacker to taint either its confidentiality, integrity or
availability, and the property could not have been tainted if the service would have
been deployed and configured correctly, without restricting availability for legitimate
clients.” Following this definition, unchanged insecure default settings in software
configurations can also lead to a service that can be considered to be misconfigured.

Default settings for a piece of software can usually be set in two ways. Defaults
may be built into the application itself, or set in a bundled configuration file. With
built-in defaults, the application will function in accordance to defaults set in its
application code unless overridden by an external setting. In this paper we will refer
to built-in defaults as no-setting defaults.

The second method of applying default settings for an application is through a
default configuration file, that is installed simultaneously with the software. This
configuration file, if applicable combined with built-in defaults, then dictates the
default setup of the application.

Like multiple methods of applying default settings exist, software can be installed
in a number of ways. For Unix-like systems, the most common method of installing
software is by downloading and installing a package file from a repository. A repository
is a catalogue of software managed by the distributors of the respective distribution or
operating system. The software in the repository is managed by maintainers. These
maintainers can be the developers of the actual software, but can also be a third
party or individual unrelated to the maintained software. The maintainer of a piece
of software in a repository is responsible for packaging the original application for the
respective operating system including for example startup and install scripts, as well
as a default configuration for the software. A schematic overview of these relations is
available in Figure 1.

In some situations, no package for a piece of software may be available in the
official repositories for an operating system. This may for example be due to software
licensing conflicts or due to the relative obscurity of a package. In such a situation
the developer of the software may provide their own repository, containing only their
own software, or provide the packaged application through other means, for example
making it downloadable from their website. Another method of installing software
is building and installing the application from its source code. In this situation the
source code and other files related to the application, such as configuration files, are
supplied by the distributor of the source package, which is usually the developer of
the software itself.

2.2 Automated Testing

Automated testing of code has received significant attention in recent years as part of
the DevOps and test-driven development paradigms. As such, continuous integration
tools such as Jenkins [32] and services as Travis CI [33] have seen significant uptake.

4

Figure 1: Schematic overview of packages in a repository. Maintainers are respon-
sible for their packages in the repository, distributors are responsible for the overall
repository itself.

These tools allow to automatically build and test services according to predefined
tests to determine whether recent modifications to the code introduced faults in the
operation of the application.

Additionally, tools exist to scan servers or networks whether they run versions of
software that may be open to exploits such as unpatched vulnerabilities [23, 28, 3].
With container environments being very popular and containers largely being based
on default images, tools specifically designed to scan for vulnerabilities in containers
have been introduced, such as Docker security scanning [17], CoreOS Clair [30] and
Twistlock [34].

The frameworks mentioned above use different approaches to detect issues. The
tests used in continuous integration systems are usually designed based on specific
parts of the application code that is to be tested, this is called a white-box approach.
Vulnerability scanners in their simplest form however match the version of software
that is detected to run on the tested system against a database of software versions
and vulnerabilities existing in these versions to decide whether a system is vulnerable,
without specific knowledge about the tested system or software. This is called a black-
box approach.

Further, there is a distinction between dynamic and static analysis. In dynamic
analysis, a running system is analysed by interacting with the respective application.
In static analysis, the application binaries or code are analysed. General purpose vul-
nerability scanners generally perform dynamic analysis, whereas the described con-
tainer scanning frameworks perform static analysis, scanning container images for
vulnerabilities without actually running the container.

3 Methodology

In this research, we will perform dynamic analysis on our tested set of applications in
a grey-box approach. Our tests are designed based on the possible configuration of the
tested service and judge the security posture of the tested applications by interacting
with the service. This reflects the way in which an attacker would access a vulnerable
Internet-facing system, and allows us to determine the default configured state of
an application, regardless of whether these defaults stem from a configuration file or
built-in defaults.

5

Figure 2: Schematic Overview of Test Setup

3.1 Configuration Testing Framework

In order to conduct our tests in a way that is easily reproducible, we set up an auto-
mated framework to conduct tests and gather results for this project. The framework
spins up virtual machines on which the tests will be conducted. The tests themselves
will also be conducted from a virtual machine in order to increase the portability of
our framework. A schematic overview of this setup is available in Figure 2.

We use Vagrant [8] to launch and manage the virtual machines. Vagrant allows
to easily launch virtual machines, or boxes, without user interaction and supports
multiple virtualisation backends. In this work, Virtualbox was used as the virtualisa-
tion backend as this is supported by the largest number of publicly available Vagrant
boxes. When supported by the boxes, other backends can be used as well.

As we use Vagrant to manage the virtual machines, we use default Vagrant boxes
as the basis for the platforms tested in this project. The framework will automatically
download and import the Vagrant boxes that are configured to be part of the test.

The Vagrant boxes are provisioned with the tested software using Ansible play-
books [29]. As Ansible is designed to ensure idempotency each time the same playbook
is executed on the same system, this ensures our tested systems are in an appropriate
and reproducible state upon every execution of the framework. As with the platforms
that are to be tested, Ansible also provisions the virtual machine executing the tests
with the software that is needed to run the tests.

All tests will be executed from the Testrunner virtual machine, remote to the
tested targets. On-host tests are not included in this research.

The basic form of the tests executed by the Testrunner is a wrapper script around
a client application for the tested service. When a service is found to be remotely
accessible, this client attempts to interact with it. The outcome thereof is interpreted
by the script and a result is returned. The actual tests are specific to the tested
services and are further described from Section 3.2.1 onward.

3.2 Software and Tests

We have selected a diverse set of Internet services to be tested in this project. As
these services provide very different functionality, insecure defaults for these services

6

can have very different security implications. We will be testing a database server,
two DNS resolvers, two mail transfer agents, NTPD and the Mosquitto MQTT server.

Though many more applications can be imagined that would be very interesting
to test, the scope for this research project has been limited to the described services.
As our framework uses default Vagrant images and Ansible playbooks, the platform
can be easily extended to test more applications and or platforms. The selected
services will be installed on various versions of Ubuntu, Debian, Fedora, CentOS and
FreeBSD, as seen in Table 1. All versions tested are currently supported by their
respective distributor as of July 2018.

The focus of this research is to uncover any differences in security performance
that may exist between different distributions or software packages. As such, while the
versions of the tested software differ between different platforms and different versions
thereof, we do not expect the version of the tested software itself to be the source
of any perceived differences in security performance. Should trends in our results
correlate with software versions however, we will further analyse these situations to
determine its cause.

Platform Version M
yS

Q
L

U
nb

ou
nd

B
in

d

N
T
P

M
Q
T
T

P
os

tfi
x

Se
nd

m
ai
l

Ubuntu 18.04 10.1.29-6 1.6.7 9.11.3 4.2.8p10 1.4.15-2 3.3.0 8.15.2-10
16.04 10.0.34 1.5.8 9.10.3 4.2.8p4 1.4.8 3.1.0 8.15.2-3
14.04 5.5.59 1.4.22 9.9.5 4.2.6p5 0.15 2.11.0 8.14.4-4

Debian Stretch 10.1.26 1.6.0 9.10.3 4.2.8p10 1.4.10-3 3.1.8 8.15.2-8
Jessie 10.0.35 1.4.22 9.9.5 4.2.6p5 1.3.4-2 2.11.3 8.14.4-8

CentOS 7 5.5.56 1.6.6 9.9.4 4.2.6p5 1.4.15 2.10.1 8.14.7
6 5.1.73 1.4.20 9.8.2 4.2.6p5 N/A 2.6.6 8.14.4

Fedora 28 10.2.15 1.7.2 9.11.3 4.2.8p11 1.5 3.2.5 8.15.2
27 10.2.15 1.7.2 9.11.3 4.2.8p11 1.5 3.2.5 8.15.2

FreeBSD 11.1 5.5.60 1.7.3 9.12.1 4.2.8p11 1.4.14 2 3.3.1,1 8.15.2
10.4 5.5.60 1.7.3 9.12.1 4.2.8p11 1.4.14 2 3.3.1,1 8.15.2

Table 1: Tested Platforms and Software

3.2.1 MySQL

Though other databases and NoSQL solutions having seen significant uptake in re-
cent years, MySQL is still the most popular database server [7], commonly supporting
web applications as part of the traditional Linux Apache MySQL PHP ’LAMP’ stack.
In most current open-source operating systems the original MySQL server has been
replaced with its community-driven fork MariaDB. We will therefore be testing Mari-
aDB on all platforms with the exception of CentOS 6, where we will install MySQL
as no package for MariaDB is available in the repositories for this platform.

While databases and key-value stores are commonly configured to accept remote
connections, remote connections should only be allowed within a trusted network,
with most databases and key-value stores not supporting transport-layer encryption,
or even user authentication [16]. Remote access to MySQL server resources can be
configured in two ways. Firstly, the MySQL server can be configured to only accept
connections through a domain socket, or to only accept TCP/IP connections from
localhost. The other or additional method is to restrict the hosts a database user is

7

allowed to connect from. While both methods can be used to prevent unauthorised
remote access to databases, we consider the former to be more secure as a default
configuration than the latter method, as adding a user with a weak password and
insufficient host restrictions will not be enough to open the system up to a remote
attacker in that case.

In our MySQL test we will attempt to connect to the database remotely as the
root user, which exists by default in all MySQL installations.

3.2.2 DNS Resolvers

DNS resolvers are commonly exploited for use in DNS-amplification DDoS attacks,
amplifying traffic up to 179 times [36]. Bind and Unbound are two of the most popular
DNS resolvers. While Unbound is strictly a DNS resolver, BIND can be utilised as
both a resolver and an authoritative nameserver. We will only consider the resolver
functionality, as this opens a server up to large-scale abuse, whereas this is less likely
for a nameserver. We will test whether Bind and Unbound are configured as recursive
resolvers by querying an existing domain name. If the requested record is returned,
this indicates the server is configured as an open resolver.

3.2.3 NTP

Starting at the end of 2013, NTP amplification attacks rapidly rose to be the most
significant vector for large DDoS attacks [12]. Like with DNS, NTP-based DDoS
attacks exploit the UDP-based nature of the application protocol by spoofing the
source address in requests to an NTP server and using the NTP server as traffic
amplifier. In order to effectively amplify traffic, the NTP server is queried with the
monlist command, which returns a very large reply. Though monlist has the highest
amplification factor, other query commands exist in NTP for which the reply is larger
than the request [12]. In our test we will query the NTP server with NTP the monlist
and peers commands to determine whether the server is open to queries.

3.2.4 MQTT

The Message Queuing Telemetry Transport (MQTT) protocol, is a very popular pro-
tocol supporting Internet of Things devices. MQTT servers, also named brokers, can
be deployed locally in the same network as the IoT devices it supports, as well as on
remote servers that are accessed over the Internet by their client devices. Authenti-
cation of clients is possible through username and password as well as through client
certificates as part of the MQTT protocol [10]. Authorisation of authenticated clients
is handled using access control lists. When no access control is in place, any client
is allowed to subscribe and publish to any topic on the MQTT server. Subscribing
to all topics on the server additionally is possible using a multi-level wildcard (#). In
this project we will be testing the Mosquitto [20] MQTT server. This is among the
most widely used MQTT servers and is the only MQTT server available through the
repositories on most of our test platforms. As no Mosquitto package is available in
the repositories for CentOS 6, no MQTT tests are performed for this platform. In
our MQTT test we will attempt to connect to the MQTT broker and subscribe to
the $SYS topic, as well as all other topics by subscribing to a wildcard topic. We will
then publish a message to a topic and check whether it is received by the subscribed
client.

8

Platform Version M
yS

Q
L

U
nb

ou
nd

B
in

d

N
T
P

M
Q
T
T

P
os

tfi
x

Se
nd

m
ai
l

Ubuntu 18.04 + - + + - +1 +2

16.04 + - + + - +1 +2

14.04 + - + + - +1 +2

Debian Stretch + - + + - +1 +2

Jessie + - + + - +1 +2

CentOS 7 o + + + - +2 +2

6 o + + + +2 +2

Fedora 28 o + + + - +2 +2

27 o + + + - +2 +2

FreeBSD 11.1 o + + + - +1 +1

10.4 o + + + - +1 +1

+: Secure default; o: Problematic choice; -: Insecure default;
1Relay access denied 2Bound to localhost

Table 2: Overview of test results.

3.2.5 Mail Transfer Agents

Postfix is one of the currently most used mail transfer agents, while Sendmail has
historically been very widely used [2]. Mail Transfer Agents have historically been de-
signed to support forwarding or relaying e-mail destined for other mailservers, should
the destination server be (temporarily) unreachable or unavailable to the sender.
Nowadays however, open relays are commonly exploited to send unsolicited mail.
Our test script will attempt to connect to the mail server installed on the tested
system, and to relay e-mail through the server to a remote address without authen-
ticating, both with an external e-mail address as sender, as well as a sender that is
expected to exist on the tested host.

3.3 Ethical Considerations

As described in Section 3.1, the tests in this research are conducted on our own in-
frastructure on clean virtual machines that do not contain any user data. While the
tested virtual machines can reach remote hosts, the machines are themselves unreach-
able outside of the testing network, preventing any insecurely configured services from
being exploited and impacting a third party.

Should our tests uncover problematic defaults that are likely to impact a large
number of users, we will responsibly disclose our findings to the parties involved.

4 Results

We used our framework to execute the tests on our set of applications and platforms.
The results of the tests are displayed in Table 2. The results per service are described
in their respective sections from Section 4.1 onward.

4.1 MySQL

On none of the tested platforms was it possible to remotely log into the MySQL
server as the root user. On Ubuntu and Debian, this was due to MySQL only listen-

9

ing for connections on the localhost interface, whereas Fedora, CentOS and FreeBSD
by default listened for connections on all interfaces, but had the default users con-
figured to only accept login attempts from those users from the local machine. This
means that if an administrator were to configure a new user with a weak password
and does not properly limit the hosts the user is allowed to login from, the system
would immediately be open to be compromised with the default Fedora, CentOS and
FreeBSD configuration, whereas this would not be the case with the Ubuntu and
Debian defaults.

4.2 DNS

In our DNS tests we find notable differences between our two tested resolvers. While
Unbound is by default configured to only listen for queries on the localhost inter-
face, for Bind this is only true for Fedora, CentOS and FreeBSD. Interestingly, the
CentOS and Fedora configuration files for Unbound contained a note that binding to
all interfaces was disabled, as per the Fedora policy of not listening on all interfaces
by default. This is especially notable considering MySQL was seen to listen on all
interfaces by default on these platforms, as described in Section 4.1.

A possible explanation for the difference between Bind and Unbound on Ubuntu
and Debian may be found in the no-setting defaults for these applications. When
the interfaces to listen on are not explicitly set in the configuration, Bind defaults to
listening on all interfaces, whereas Unbound defaults to listening only on the localhost
interface.

Of note is that while both have Bind configured as an open resolver by default, the
very minimal default Unbound configuration for Debian Stretch and Ubuntu 18.04
enables RFC7816 [11] support, minimising queries to upstream nameservers, meant
to increase user privacy.

4.3 NTP

While having been used as a vector for some of the largest DDoS attacks ever
recorded [12], NTP is among the most well-behaved applications in our testset.
Though listening on all interfaces by default, it allows no queries by default on any
platform.

As a response to NTP’s stake in large DDoS attacks, the monlist query has been
completely removed from ntpd versions 4.2.7 and up [31]. While CentOS 6 and 7,
and Debian Stretch and Ubuntu 14.04 run ntpd 4.2.6, the default configuration for
all these platforms has been configured to not accept NTP queries by default.

As large numbers of NTP servers were seen to participate in DDoS attacks, we
installed ntpd on Ubuntu 6.06 to find out how NTP was configured on this old system.
It turned out however that even in this release NTP is configured to not accept any
queries by default. Though no comprehensive history of Ubuntu packages could be
found, the overview of Debian NTP package versions [4] revealed NTP was configured
not to accept queries by default as far back as 2006 as well.

4.4 MQTT

As suggested by its manpage [19], Mosquitto is seen to be completely open to outside
read and write access by default on all tested platforms. While making it very easy
to set up an MQTT service, these defaults are troubling considering the fact MQTT
is commonly used to forward commands to clients connected to the server. While
it is unclear whether these situations are rooted in the insecure defaults we found

10

here, improperly configured MQTT servers have already been seen to have significant
security and privacy risks [21, 35].

4.5 Mail Transfer Agents

Both postfix and the older Sendmail can be seen to perform securely by default. With
spam and malicious e-mail having been commonplace for years, it is not unlikely the
default configurations currently used have been specifically developed in order to not
setup mail servers as open mail relays by default. Notable is that CentOS and Fedora
have postfix bound to localhost by default, whereas one would usually want a mail
server to listen on a publicly accessible interface in order to be able to receive messages
from other servers. If binding to localhost is the only security strategy applied, this
could potentially make the system less secure than when relay access is denied for
unknown users or domains, as users that wish to configure the mail server to receive
e-mail from other servers will negate the bind-to-localhost defence.

Sendmail is by default bound to localhost on all platforms except for FreeBSD.
This is most likely due to the fact that Sendmail is and has been often used just as
an SMTP client, only sending e-mail. In this use case, it is not required to listen on
an interface.

5 Discussion

In our results we have found some marked differences in the security posture of services
both between the same service running on different platforms, as well as comparable
services on the same platform. While looking at the configuration file for Unbound
on Fedora, we found explicit mention of a Fedora policy not to listen on all addresses
by default. While Fedora has extensive guidelines regarding the approval process for
new packages, no mention is made of what should be in a default configuration [6].
Fedora does however require all services that start by default on package installation
to not listen for remote connections [5].

Though not explicitly mentioning default configurations, Debian has guidelines in
place that aims to audit all packages conforming to certain criteria [1], one of which
is providing a remotely reachable service.

While having a spotty reputation in the past and present due to their role in abuse
on the Internet, ntpd and both MTAs tested in this research project are securely con-
figured by default on all our tested platforms. As the three respective applications and
the service they provide have been around for quite some years, this long timeframe
may have contributed to the nowadays relatively sane state of their default supplied
configurations.

Though most packages were bound to localhost by default on Fedora and CentOS,
notably MySQL was not. This is notable as in the majority of situations wherein
MySQL is used, it supports applications that run on the same host as the database
itself. In such situations it is not necessary to be able to accept remote connections.
Only in situations where a database server should support applications running on
other hosts is remote access desired. As described in Section 4.1, this should only be
done in a trusted network.

While MySQL by default is bound to localhost on the tested Debian and Ubuntu
versions, Bind on the other hand is configured as an open resolver on these systems
whereas this is securely configured on Fedora, CentOS and FreeBSD. This again is
problematic. While recursive is one of the most common use cases for Bind, and even
the only use case for Unbound, in most cases the resolver should only be available to

11

the system itself or a number of trusted systems, rather than the entire Internet. As
such, for most services it would be sensible to place the burden of opening the system
up as much as is desired to the user, rather than the other way around.

5.1 Limitations

As our tests are executed from a host remote to the tested system, it was not possible
to check any further layers of defence, should a service be bound to localhost by
default. As such, we did not test whether any further layers of defence are deployed
for these services, and what the security posture of these services would be when a
user configures the service to be remotely accessible.

In this research project we have executed our tests over IPv4. While we do not
believe to find different results if we were to replicate our tests over IPv6 for the
software tested in this project, discrepancies in IPv4 and IPv6 availability of services
may be found for other applications [13].

As our framework utilises Vagrant for managing the virtual machines, we relied
on the distributors of our tested platforms to provide Vagrant compatible images
reflecting a default installation of the platform. As building our own images was
outside the scope of this research, we could not test platforms that had no official
Vagrant images available.

6 Related Work

With misconfiguration of Internet services making for potentially dangerous attack
vectors, work exists into analysing software or device configurations for dangerous
or inadvisable settings, such as SCAAMP [14]. This framework generates a security
score for an Apache MySQL PHP (AMP) setup by parsing the respective configura-
tion files and comparing the settings to their recommended values. An approach for
detecting insecure configurations in an end-to-end network is presented in the Net-
work Configuration in A Box paper [9]. Herein ConfigChecker is presented, which
allows to express a network of devices with their configurations in a model and then
test the security posture of the modelled network. Besides rule-based configuration
testing, data-mining has also been applied to detecting misconfigurations, such as
Minerals [18], which detects misconfiguration in networks with multiple routers by
applying association rules mining to router configuration files. Also a data mining
approach, EnCore includes information about the system environment in misconfig-
uration detection, taking built-in defaults into account [37].

While a large body of work exists on misconfigurations in software, no work was
currently found to exist on the role of insecure default settings in systems that are
considered to be misconfigured. In this paper we provide a first look into the security
posture of default settings, and the origin of these defaults. We also introduce a
framework that allows to easily test default settings for internet services on different
platforms.

7 Conclusion

In this paper we have developed an automated framework allowing us to easily install
and test software on different platforms without user interaction in a way that is easily
reproducible.

12

In our limited set of tested software and platforms we have already found differ-
ences regarding the security posture of default software configurations, notably for
different pieces of software serving the same means on the same platform.

Based on the different strategies for securing Internet services observed in this
research, a metric quantifying the security posture of an Internet service could be
expressed in the number of security layers defending against common exploitation
of the respective service. Such a metric however can not necessarily be generalised
between different services, with binding to localhost being arguably more effective for
database servers than for mail transfer agents, with the former only requiring remote
access in some specific use cases and the latter requiring it in practically all.

While distributors of an operating system are usually not responsible for the actual
contents of default configurations of packages in their repository, they are responsible
for the overall repository and can demand a certain level of security for all packages
therein, mandating certain defaults, as referenced in Section 4.2. While we find
differences in security posture for Internet services between platforms, we did not
identify factors that would prevent or prohibit a software distributor from increasing
the default security of their software package. Rather we do see that where security
policies are in place prohibiting listening on all interfaces by default, services can be
seen to have a better default security posture on those platforms than where those
policies are not enforced.
Future Work: While in this research we have seen most services to be shipped
with sane default settings, it may be very interesting to research the defaults that
may have been shipped for an application throughout the years. This may however
be challenging as this would largely rely on the availability of old repository snapshots
as these will have been updated throughout the lifetime of the respective distribution.

In addition to default configurations, systems may also be vulnerably configured
through configurations from other sources. Many tutorials for example exist how to
configure certain Internet services. These tutorials may have been followed by a large
number of users and it may be interesting to determine how secure these tutorial
configurations really are. Similarly, large numbers of users may be running services
on the same Docker images. While these images can automatically be tested for
vulnerabilities as described in Section 2, their configuration is not tested, while a
single misconfiguration in an image may affect a large number of users spread over
many different networks.

In this research project we have tested only a small set of applications and plat-
forms. Scaling up this research to include more platforms and packages could be
interesting further research. While we have only focused on applications on general
purpose operating systems, analysing the default configurations of embedded devices
could additionally be very interesting. Configurations of devices such as consumer
routers are often not modified or updated by their users at all, meaning defaults
could persist in a network for an extended period of time.

In this paper we have focused on the security implications default configurations.
While briefly touched upon in Section 4.2, we have not specifically looked into privacy
implications of default configurations. Future work could thus be extending the scripts
used in this research to also perform such tests. A new project investigating the default
privacy of client applications could also be imagined.

References

[1] Debian – Auditing Package Prioritization Guidelines. https://www.debian.

org/security/audit/packages.en.html. (Accessed on 2018-07-10).

13

https://www.debian.org/security/audit/packages.en.html
https://www.debian.org/security/audit/packages.en.html

[2] Mail (MX) Server Survey. http://www.securityspace.com/s_survey/data/

man.201806/mxsurvey.html. (Accessed on 2018-07-10).

[3] Nessus professional vulnerability scanner. https://www.tenable.com/

products/nessus/nessus-professional. (Accessed on 2018-07-09).

[4] ntp - snapshot.debian.org. http://snapshot.debian.org/package/ntp/.

[5] Packaging:defaultservices - fedora project wiki. https://fedoraproject.org/

wiki/Packaging:DefaultServices?rd=DefaultServices. (Accessed on 2018-
07-10).

[6] Packaging:ReviewGuidelines - Fedora Project Wiki. https://fedoraproject.

org/wiki/Packaging:ReviewGuidelines#Package_Review_Process. (Ac-
cessed on 2018-07-10).

[7] Stack Overflow Developer Survey 2018. https://insights.stackoverflow.

com/survey/2018/#technology-databases. (Accessed on 2018-07-11).

[8] Vagrant by HashiCorp. https://www.vagrantup.com/. (Accessed on 2018-07-
11).

[9] Ehab Al-Shaer, Will Marrero, Adel El-Atawy, and Khalid Elbadawi. Network
configuration in a box: Towards end-to-end verification of network reachability
and security. In Proc. IEEE International Conference on Network Protocols,
pages 123–132, 2009.

[10] Andrew Banks and Rahul Gupta, editors. MQTT Version 3.1.1, OASIS Stan-
dard, October 2014.

[11] S. Bortzmeyer. DNS Query Name Minimisation to Improve Privacy. RFC 7816,
RFC Editor, March 2016.

[12] Jakub Czyz, Michael Kallitsis, Manaf Gharaibeh, Christos Papadopoulos,
Michael Bailey, and Manish Karir. Taming the 800 pound gorilla: The rise and
decline of NTP DDoS attacks. In Proc. ACM Internet Measurement Conference,
pages 435–448, 2014.

[13] Jakub Czyz, Matthew Luckie, Mark Allman, and Michael Bailey. Don’t Forget
to Lock the Back Door! A Characterization of IPv6 Network Security Policy. In
Proc. Symposium on Network and Distributed System Security (NDSS), volume
389, 2016.

[14] Birhanu Eshete, Adolfo Villafiorita, and Komminist Weldemariam. Early de-
tection of security misconfiguration vulnerabilities in web applications. In Proc.
IEEE Conference on Availability, Reliability and Security (ARES), pages 169–
174. IEEE, 2011.

[15] Tobias Fiebig. An empirical evaluation of misconfiguration in Internet services.
PhD thesis, TU Berlin, 2017.

[16] Tobias Fiebig, Anja Feldmann, and Matthias Petschick. A one-year perspective
on exposed in-memory key-value stores. In Proc. ACM Workshop on Automated
Decision Making for Active Cyber Defense, pages 17–22, 2016.

14

http://www.securityspace.com/s_survey/data/man.201806/mxsurvey.html
http://www.securityspace.com/s_survey/data/man.201806/mxsurvey.html
https://www.tenable.com/products/nessus/nessus-professional
https://www.tenable.com/products/nessus/nessus-professional
http://snapshot.debian.org/package/ntp/
https://fedoraproject.org/wiki/Packaging:DefaultServices?rd=DefaultServices
https://fedoraproject.org/wiki/Packaging:DefaultServices?rd=DefaultServices
https://fedoraproject.org/wiki/Packaging:ReviewGuidelines#Package_Review_Process
https://fedoraproject.org/wiki/Packaging:ReviewGuidelines#Package_Review_Process
https://insights.stackoverflow.com/survey/2018/#technology-databases
https://insights.stackoverflow.com/survey/2018/#technology-databases
https://www.vagrantup.com/

[17] Lily Guo, Toli Kuznets, and Nandhini Santhanam. Docker security scanning
safeguards the container content lifecycle - docker blog. https://blog.docker.
com/2016/05/docker-security-scanning/, may 2016.

[18] Franck Le, Sihyung Lee, Tina Wong, Hyong S Kim, and Darrell Newcomb. Min-
erals: using data mining to detect router misconfigurations. In Proc. ACM SIG-
COMM, pages 293–298, 2006.

[19] Roger Light. mosquitto.conf man page — Eclipse Mosquitto. https://

mosquitto.org/man/mosquitto-conf-5.html.

[20] Roger A Light. Mosquitto: server and client implementation of the mqtt protocol.
Journal of Open Source Software, 2(13), 2017.

[21] Lucas Lundgren. Lightweight protocol! serious equipment! critical implications!
https://www.rsaconference.com/writable/presentations/file_upload/

hta-r03-light-weight-protocol-serious-equipment-critical-implications.

pdf, 2016.

[22] Kiran Nagaraja, Fábio Oliveira, Ricardo Bianchini, Richard P Martin, and
Thu D Nguyen. Understanding and dealing with operator mistakes in internet
services. In Proc. OSDI, volume 4, pages 61–76, 2004.

[23] OpenVAS. OpenVAS - OpenVAS - Open Vulnerability Assessment System.
http://www.openvas.org/.

[24] OWASP Foundation. Top 10 2010-A6-Security Misconfiguration -
OWASP. https://www.owasp.org/index.php/Top_10_2010-A6-Security_

Misconfiguration, 2010.

[25] OWASP Foundation. A10 2004 Insecure Configuration Management - OWASP.
https://www.owasp.org/index.php/A10_2004_Insecure_Configuration_

Management, 2004.

[26] OWASP Foundation. Top 10 2013-A5-Security Misconfiguration -
OWASP. https://www.owasp.org/index.php/Top_10_2013-A5-Security_

Misconfiguration, 2013.

[27] OWASP Foundation. Top 10-2017 A6-Security Misconfiguration -
OWASP. https://www.owasp.org/index.php/Top_10-2017_A6-Security_

Misconfiguration, 2017.

[28] Rapid7. Top Rated Vulnerability Management Software — Rapid7. https:

//www.rapid7.com/products/nexpose/.

[29] Red Hat Inc. Ansible is Simple IT Automation. https://www.ansible.com/.
(Accessed on 2018-07-11).

[30] Red Hat Inc. CoreOS Clair Documentation. https://coreos.com/clair/docs/
latest/.

[31] United States Computer Emergency Readiness Team. NTP Amplification
Attacks Using CVE-2013-5211. https://www.us-cert.gov/ncas/alerts/

TA14-013A, January 2014. (Accessed on 2018-07-04).

[32] The Jenkins Project. Jenkins. https://jenkins.io/.

15

https://blog.docker.com/2016/05/docker-security-scanning/
https://blog.docker.com/2016/05/docker-security-scanning/
https://mosquitto.org/man/mosquitto-conf-5.html
https://mosquitto.org/man/mosquitto-conf-5.html
https://www.rsaconference.com/writable/presentations/file_upload/hta-r03-light-weight-protocol-serious-equipment-critical-implications.pdf
https://www.rsaconference.com/writable/presentations/file_upload/hta-r03-light-weight-protocol-serious-equipment-critical-implications.pdf
https://www.rsaconference.com/writable/presentations/file_upload/hta-r03-light-weight-protocol-serious-equipment-critical-implications.pdf
http://www.openvas.org/
https://www.owasp.org/index.php/Top_10_2010-A6-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2010-A6-Security_Misconfiguration
https://www.owasp.org/index.php/A10_2004_Insecure_Configuration_Management
https://www.owasp.org/index.php/A10_2004_Insecure_Configuration_Management
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10-2017_A6-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10-2017_A6-Security_Misconfiguration
https://www.rapid7.com/products/nexpose/
https://www.rapid7.com/products/nexpose/
https://www.ansible.com/
https://coreos.com/clair/docs/latest/
https://coreos.com/clair/docs/latest/
https://www.us-cert.gov/ncas/alerts/TA14-013A
https://www.us-cert.gov/ncas/alerts/TA14-013A
https://jenkins.io/

[33] Travis CI GMBH. Travis CI - Test and Deploy with Confidence. https://

travis-ci.com/.

[34] Twistlock Ltd. Docker security & docker swarm security — twistlock. https:

//www.twistlock.com/solutions/docker-security/.

[35] Henk van Doorn and Bernardus Jansen. Monitoring MQTT monitors, 2018.
unpublished.

[36] Roland van Rijswijk-Deij, Anna Sperotto, and Aiko Pras. DNSSEC and its
potential for DDoS attacks: a comprehensive measurement study. In Proc. ACM
Internet Measurement Conference, pages 449–460, 2014.

[37] Jiaqi Zhang, Lakshminarayanan Renganarayana, Xiaolan Zhang, Niyu Ge, Vas-
anth Bala, Tianyin Xu, and Yuanyuan Zhou. EnCore: Exploiting system en-
vironment and correlation information for misconfiguration detection. ACM
SIGARCH Computer Architecture News, 42(1):687–700, 2014.

16

https://travis-ci.com/
https://travis-ci.com/
https://www.twistlock.com/solutions/docker-security/
https://www.twistlock.com/solutions/docker-security/

	Introduction
	Background
	Misconfiguration
	Automated Testing

	Methodology
	Configuration Testing Framework
	Software and Tests
	MySQL
	DNS Resolvers
	NTP
	MQTT
	Mail Transfer Agents

	Ethical Considerations

	Results
	MySQL
	DNS
	NTP
	MQTT
	Mail Transfer Agents

	Discussion
	Limitations

	Related Work
	Conclusion

