
40 Gigabit Ethernet: Prototyping Transparent End-to-End
Connectivity

Cosmin Dumitru Ralph Koning
Cees De Laat

University of Amsterdam, Science Park 904, 1098XH

{c.dumitru,r.koning,delaat}@uva.nl

Abstract

The ever increasing demands of data intensive eScience
applications have pushed the limits of computer net-
works. With the launch of the new 40 Gigabit Ether-
net(40GE) standard, 802.3ba, applications can go be-
yond the common 10 Gigabit/s per data stream barrier
for both local area, and as demonstrated in the GLIF
2010 and Supercomputing 2010 demos[3], wide area se-
tups. In this article we profile the performance of state-
of-the-art server hardware combined with 40GE tech-
nology. We give an insight on the issues involved with
ultra high performance network adapters and suggest
optimization approaches.

Keywords: 40G Ethernet, Optical Networks, Com-
puter Architecture

1 INTRODUCTION

The dual 40/100 Gigabit Standard 802.3ba [5] is the
next evolution of the Ethernet standard. It increases
the maximum speed at which Ethernet frames can be
transmitted and defines new physical (PHY) standards
for the transport of data over copper or optical media.
It was was approved in its final state in July 2010 with
vendors announcing hardware that implements it (and
its drafts) in September 2009. In Q3 of 2010, 40GE
client adapters became available in limited supply. At
the same time several vendors started offering optical
switch modules or development platforms.

Given the promised four fold increase from 10Giga-
bit Ethernet (10GE), 40GE puts extra stress on the
underling hardware because it is able, as it will be
presented in this article, to saturate the PCI Express
computer interface. Other technologies, like Infiniband
Quad Data Rate(QDR), already provide comparable
speeds but they are limited in use to the datacenter
premises. Multiple 10GE network interface cards can
be bonded in a single logical Ethernet interface us-
ing the IEEE 802.3ad Link Aggregation standard but

even so, the single stream maximum rate is limited to
10Gbit/s. This is because, in order to avoid frame re-
ordering, frames intended for one receiver are always
sent on the same physical interface.
In the last years, computer architectures shifted from

the single core CPUs to multicore. Together with this
shift, CPU manufacturers started integrating a local
memory controller on the CPU die in order to increase
the available bandwidth to the memory. This led to
the situation where each CPU has its own local mem-
ory and any access outside the local memory is done
through another CPU. Essentially, this means that any
modern multi socket x86 machine uses the Non Uniform
Memory Architecture (NUMA).

2 EXPERIMENTAL SETUP

Figure 1: Server Hardware Specifications
Server Model Supermicro H8DTT-HIBQF Dell R815

CPU Model Intel Xeon E5620 2.4GHz AMD Opteron6172 2.1GHz

Core Count 2 x 4 cores 4 x 12 cores

RAM 24GB 128 GB

In this section we will describe the setup used during
our experiments. Two models of servers were used,
both employing a form of NUMA: an OEM server based
on the Supermicro H8DTT-HIBQF motherboard and a
Dell R815. The hardware specifications of the servers
are displayed in figure 1. In the rest of this article we
will refer to the the platforms as Intel Nehalem and
AMD Magny Cours.

Server Architecture Both server models support
the PCI-E Gen 2.0 peripheral interface. Besides the
CPU frequency, core count and RAM memory, one very
important architectural aspect is the way the CPUs are
connected to each other and to the I/O Hubs or PCI-
E bridges. While the Intel Nehalem motherboard uses
only one chip to connect the CPUs to the peripherals,
the AMD Magny Cours uses two chips allowing more



Figure 2: Simplified view of the AMD Magny Cours IO
Architecture - Dual HexaCore Quad Socket

I/O 
Bridge

Network 
Card

I/O 
Bridge

PCI-E 2.0 8x

P0

P2

P1

P6

P5

P7P3Coherent
HT

CPU 
Package

Non Coherent
HT

P4

Coherent HT

PCI-E devices to be connected to the machine. The
dual chip approach increases the available bandwidth,
yet depending on the chosen topology, it extends the
path from the NUMA nodes to the peripherals.
The AMD Magny Cours platform employes 48 CPU

cores. The cores are grouped into 4 CPUs or pack-
ages, each package having two six-core CPU modules
that share a common L3 cache. From an NUMA point
of view, a package is equivalent to two NUMA nodes.
The HyperTransport interconnect enables communica-
tion between the nodes or PCI-E bridges. A more in-
depth description of the platform can be found in [2],
where the authors present possible CPU I/O topolo-
gies, each suited for either I/O performance or low la-
tency (small diameter of the CPU network) the latter
being the recommended setup for server manufactur-
ers. We assume that the I/O topology of the AMD
Magny Cours platform used is the low latency variant
presented in figure 2 . Two of the CPU packages are not
connected directly to the PCI-E bridges but through
the other two CPU packages - in figure 2 P5-P7 and
P4-P6.
The Intel Nehalem platform[1] used had a lower core

density, only 8 cores, provided by two quad-core CPUs,
each CPU representing one NUMA node . Although the
HyperThreading feature was available, it was disabled
during all the tests. Inter-node (CPU) communication
and PCI-E connectivity to the CPUs is provided by the
the Quick Path Interconnect (QPI) interface (figure 3).

Connectivity For the connectivity we used two
Mellanox ConnectX2 40GE NICs (firmware version

Figure 3: Simplified view of the Intel Nehalem IO Ar-
chitecture - Quad Core Dual Socket

I/O 
Bridge

Network 
Card

PCI-E 2.0 8x

QuickPath 
Inerconnect

QuickPath 
Inerconnect

QuickPath 
Inerconnect

core0

core2core3

core1 core0

core2core3

core1

CPU0 CPU1

2.7.700), connected back to back with an optical fiber
cable. The cable is comprised of two QSPF+ optical
modules and a 12 pair MPO fiber (SR4 standard). In
the SR4 standard, four multimode fibers are used for
the RX side and 4 multimode fibers for the TX side.
While on the logical level there is only one 40GE inter-
face available to the server, the QSPF+ optical module
has the function to convert the electrical signal sent by
the network card to four 10Gbit/s optical signals which
are sent over the four fiber strands. The PHY compo-
nent of the 40GE standard specifies the way in which
the four signals are synchronized and demultiplexed on
the receiving side. A detailed description of the PHY
component of the 802.3ba is presented in [5] . The
cards use the PCI-Express Gen 2.0 x8 peripheral in-
terface which supports a maximum of 40Gigabit/s raw
transfer rate. Due to the 8/10bit encoding used for the
PCI-E gen 2.0 protocol, the available data bandwidth
is 32Gbit/s. The real available bandwidth is further
decreased by the overhead induced by the PCI-E pro-
tocol.

Multi queue support [10], was enabled on the Mel-
lanox cards by default. The mlx4 en driver creates a
number of receive (RX) queues or rings that is equal to
the number of online CPUs (or cores). When a network
packet is received it is placed in a RX queue and the
network card triggers an interrupt signaling the corre-
sponding CPU to handle the incoming data. Each in-
coming IP packet is placed in the appropriate RX queue
according to an algorithm that hashes the IP informa-
tion in the header of the packet. The result of this is
that IP flow will be always handled in-order and by the
same core and also multiple flows will be distributed in
a fair manner to the available cores. A similar feature



Figure 4: Local iperf tests - single and multiflow

is used for the transmission part, the driver creating a
number of transmission(TX) queues that each handle
one IP flow at the sender side.

Software All experiments were performed using iperf
2.0.5, a popular and well established bandwidth testing
tool. The kernel used was vanilla Linux 2.6.38 compiled
with the same options for both platforms, the only dif-
ference being the ‘Processor Family’ option which was
set according to the underlying hardware.
The observed latency between the sender and re-

ceiver was approximately 0.15ms as reported by the
ICMP ping utility.

3 MEASUREMENTS

First we focused on the performance of the network
cards. In figure 4 we present the results of measure-
ments using two Intel Nehalem machines connected by
40GE. We present single and multi TCP flow aggregate.
As mentioned in section 1, the maximum theoretical
32Gbit/s data rate is further decreased by the inher-
ent overhead of the PCI-E protocol and of the network
protocols (Ethernet, TCP/IP) that support the com-
munication. Therefore, the application transfer rate of
25.3Gbit/s observed using two TCP streams and comes
close to the theoretical maximum. We conclude that in
our tests, the PCI-E interface becomes saturated . This
is the maximum rate at which the card can send or re-
ceive data.
The focus of our measurements was single TCP flow

performance. If the source port is not specified by an
application, the Linux kernel picks a random one from
the ephemeral port range. This is the case of the iperf
utility. Because the multi queue receive and transmit
(also known as Linux scalable I/O[8]) mechanism uses
a hash based on the IP header (source and destination,

Figure 5: Average throughput of iperf with core pinning

IP and port) we patched the iperf source code so that
for any single flow run, the same source port would be
used. This assured that a TCP flow would always be
handled by the same core.

Intel Nehalem The single stream TCP performance
throughput for the Intel Nehalem server oscillated dur-
ing the tests between 20.7Gbit/s and 23.3Gbit/s. Dur-
ing consecutive runs the parameters of the setup didn’t
change, yet the results of the measurements varied con-
siderably. We suspected that the cause of this behavior
was due to the NUMA characteristics of the machine.
The asymmetric network performance of NUMA ma-
chines has been investigated in the past, yet no research
exists on newer technology. We connected two Intel
servers back to back using 40GE. Using the numactl

utility we pinned the patched iperf process on each of
the 8 cores on the sender and receiver. This resulted
in 64 measurements that cover all the possible com-
binations of pinned sender and receiving core. Each
measurement was done over 5 minutes. In figure 5 we
present the averaged results of these measurement. We
inspected the interrupt counters, exposed by the Linux
kernel via the procfs interface and we determined that
for our given setup, the interrupts were handled by core
7. Because of this, we observe slightly lower throughput
when the iperf server process is pinned to this core.
The core to CPU mapping is more simpler and more
intuitive than in the AMD case: the first four cores be-
long to CPU0 while the remaining four to CPU1. When
the application runs on the same CPU as the core that
handles the interrupts the performance increases by ap-
proximately 2Gigbit/s. Not surprisingly, the same per-
formance increase is not achieved when iperf and the
interrupts are handled by the same core, the through-
put increasing with only 1Gigabit/s. The location of
the application on the sender node does not influence
the performance in a very significant way and therefore



Figure 6: Simple experimental setup to determine I/O
Performance - Dell AMD

Dell R815
(sender)

Supermicro X8DTT-HIBQF
(receiver)

4

5

0

1

2

3
EST

ID

40GE

Figure 7: Average throughput of iperf with core pinning
- AMD receiver

we conclude that the limitation is at the receiver sides.

AMD Magny Cours In our tests the AMD Magny
Cours was unable to reach the same I/O performance as
the Intel Nehalem server even when using iperf with
multiple threads.

In comparison with the Intel Nehalem server, the
AMD Magny Cours has a more complicated topology
and even more it is asymmetric, not all CPU sockets
being directly connected to the I/O bridges. The map-
ping of the cores to CPU packages on our setup followed

Figure 8: Average throughput of iperf with core pinning
- AMD sender

the rule: if one core has id i then it is located on pack-
age i (mod 4), so for example core 12 is located on
package 0. The first six cores from one CPU formed
the first NUMA node while the remaining six formed
the second node.
To explore the asymmetry and see its impact on I/O

performance, we performed a similar experiment where
an Intel Nehalem server and an AMD Magnuy Cours
server were connected back to back using 40GE. The
servers were configured both as an iperf server (re-
ceiver) and as a single threaded sender with the iperf
process forced to run on a specific core (figure 6). The
fact that the Intel server was able to send and receive
receive data at rates higher than the AMD server, al-
lowed us to change parameters on the AMD server with-
out worrying that the other party would not be able to
cope with the incoming data. The iperf process on the
Intel Nehalem server was pinned to the same core for
all the tests.
The measurements were repeated for each of the 48

cores available for a period of 5 minutes with the AMD
server being in turns, sender and receiver. By analyzing
the results of the average per core throughput(figures
7, 8) we can observe a pattern that indicates that some
cores perform significantly better than others. When
mapping the coreID over the given CPU topology, a
correlation between the core location, relative to the
CPU package, and I/O performance stands out. The
graph clearly shows that even for single threaded ap-
plications which do heavy I/O traffic, the placement
of the process on specific cores heavily impacts the
overall performance. In a multithreaded setting this
affinity issue is overcome by the overall interconnect
bandwidth to the PCI-E bridge. Our tests showed a
maximum of 20Gbit/s when running iperf with mul-
tiple threads(TCP streams). In our setup CPU1 has
the best connection to the I/O bridge. In the case of
the sender there is almost no difference between cores
located on CPU1 but on different nodes, the average
throughput being close to 20Gbit/s. This changes dra-
matically in the case when the AMD Magny Cours is
the receiver. The interrupts are handled by core0, and
the cores located on the same node as core0, exhibit
the best performance. Unlike in the case of the sender,
the cores located on the other NUMA node, but still on
the same package, suffer from a performance hit, losing
4Gbit/s in throughput.

4 DISCUSSION

In the case of the AMD server, the receiver can handle
throughput higher than 20Gbit/s, as shown in section
3 and therefore, we believe that the inconsistent per-
formance is caused by the limitations of the memory
architecture used. This means that for single threaded



Figure 9: Simplified view of the Linux network stack -
receiver side

NIC

RX1
Queue

RX2
Queue

RX3
Queue

RX0
Queue

Driver Hash function 
IP header

Mem Mem MemMem

CPU1 CPU2 CPU3CPU0

sk_buff app buff
DMA

iperf process, the bottle neck lies closer to the CPU
cores. In terms of interconnect bandwidth, the Hy-
pertransport links are not equally shared between the
cores[2] and even if the AMD Magny Cours has a novel
cache coherency mechanism, we can expect that still
some of the traffic is cache coherency related, leaving
less available bandwidth for data intensive applications.
Unfortunately, proving this hypothesis is beyond the
scope of this paper yet in [7] the authors suggest that
cache coherency can have an important impact on net-
work traffic.

A deeper understanding of the processes that take
place in the kernel on the receiver side was needed
and therefore, we decided to inspect the mlx4 en driver
source code [6]. As mentioned before the driver has
multiqueue support and by default it creates a number
of receive queues equal to the number of online CPUs,
as seen by the kernel. While the driver is more complex
and has support for advanced features like TCP offload-
ing and Generic Segmentation Offload (GSO), we will
not go into the details of these. The receive procedure
follows a standard NAPI network driver approach[4]:
a socket buffer structure, also named skb, is pre allo-
cated in order to handle the incoming data from the
network. When the data is received from the network,
it is buffered on the network card and the CPU is no-
tified via an interrupt about its arrival. The CPU then
polls the network card and issues a DMA transfer from
the network card to the memory address stored in the
skb structure. From here on, the kernel decides what
to do with the received packet, as it gets passed to the
upper layers of the networking stack. In the case of a
packet destined to a local application, the payload is

copied to the socket buffer belonging to the application
(figure 9). This means that the data is copied at least
twice from the moment it is received by the network
adapter, once to from the network card to kernel space
and from there to user space (for the sake of simplicity
we do not we do not take into consideration any frag-
mentation or retransmit TCP/IP buffers, even though
those exist). In the case of a NUMA machine the skb

structure is allocated on the local node, the one that
handles the receive queue from which the data orig-
inates. Obviously, if the application is running on a
different node an inter-node transfer is needed and the
topology, the memory and interconnect bandwidth and
latency affect the overall performance. Our measure-
ments clearly show degraded performance when inter-
node transfer is involved.
In our tests we assumed that the Mellanox Con-

nectX2 40GE drivers have an optimal behavior and
their performance is not affected in any way by the un-
derlying architecture. Interestingly, changing the ker-
nel from the 2.6.18 (shipped by default with Centos 5.5,
the Linux distributuion used during the measurements,
driver version 1.4.2.2) to 2.6.38 (driver version 1.5.1.6)
increased the throughput by almost 2Gbit/s in the case
of the AMDMagny Cours server. This shows that there
is some room for improvement in driver performance.
There is no standard way to map a TCP stream to

a core close to an application. While tools that pro-
vide this feature exist, like Intel Flow Director, they
are specific to certain type of hardware[9]. The net-
work stack is currently unable to derive the best core-
to-receive queue mapping. The mlx4 en driver offers
the rss mask parameter that can alter the parameters
used for the hashing functions. In this way either of
the components of the IP headers (source& destination
IP and port) can be ignored during the hash calcula-
tion. Even so, this only option offers a very crude way
of traffic steering because the outcome of the mapping
is still not straight forward.
We believe that our measurements give a good in-

sight on the capabilities of the current server hardware
when faced with network I/O intensive applications.
Given the current state of the networking stack on the
Linux OS, it is very probable that similar performance
inconsistencies will occur with future multicore NUMA
architectures and next-gen network adapters and the
approach presented in this paper could be used to in-
vestigate them.

5 CONCLUSIONS

In this report we have presented an in-depth analy-
sis of the performance of 40GE when combined cur-
rent state-of-the-art server hardware. We conclude that
given the current PCI-E 2.0 interface and CPU micro-



achitectures the 40GE standard is not yet used to its
full potential. A modern server can not fully utilize
the available bandwidth and while it can saturate the
I/O bus this leaves little room for a real application
running on the machine. When using a more capable
machine the I/O limitations stand out even more giving
40GE little advantage over other existing technologies.
With the introduction of the new PCI-E 3.0 computer
interface in late 2010 together with faster CPUs, we ex-
pect that the full potential of 40GE will be unleashed
in terms of aggregated throughput. With the current
available technology, the bottleneck has moved one level
higher, from the network to the computer’s internal in-
terconnect. At the moment, the number of applica-
tions that can leverage this bandwidth increase is still
limited. New research and applications are needed to
promote 40GE from an exotic network protocol to a
commodity interconnect.

Acknowledgments This work was made possible by
financial support from the GigaPort 2011 Research
on Networks project. The CineGrid Amsterdam con-
sortium gratefully acknowledges the generous financial
support from the European Fund for Regional Devel-
opment (EFRO), Pieken in de Delta, the Province of
Noord-Holland and the City of Amsterdam.
This article would have not been possible without

the support of : Erik-Jan Bos, Gerben van Malenstein,
Roeland Nuijts - SURFnet, David Yeung, Jan-Willem
Elion, Harry Peng, Kevin McKernan, Martin Blueth-
ner, Rodney Wilson - CIENA, Kees Verstoep, Henri
Bal -Vrije Universiteit Amsterdam, Erez Cohen,
Bill Lee - Mellanox.

References

[1] Casazza, J. First the tick, now the tock: In-
tel microarchitecture (nehalem). Intel Corporation
(2009).

[2] Conway, P., Kalyanasundharam, N., Don-
ley, G., Lepak, K., and Hughes, B. Cache
Hierarchy and Memory Subsystem of the AMD
Opteron Processor. IEEE Micro 30, 2 (Mar. 2010),
16–29.

[3] Dumitru, C., Koning, R., and de Laat, C.
Clearstream: Prototyping 40 gbps transparent
end-to-end connectivity.

[4] Foundation, L. napi article on linuxfounda-
tion.org. http://www.linuxfoundation.org/

collaborate/workgroups/networking/napi.
[Online; accessed 20-February-2011].

[5] IEEE. Ieee std 802.3ba-2010 (amendment to ieee
standard 802.3-2008). 1 –457.

[6] Inc., M. Mellanox mlx4 en driver source code
hosted on lxr.linux.no. http://lxr.linux.no/

linux+v2.6.37.1/drivers/net/mlx4/. [Online;
accessed 20-February-2011].

[7] Kumar, A., and Huggahalli, R. Impact of
cache coherence protocols on the processing of net-
work traffic. In Proceedings of the 40th Annual
IEEE/ACM International Symposium on Microar-
chitecture (Washington, DC, USA, 2007), MICRO
40, IEEE Computer Society, pp. 161–171.

[8] Provos, N., Lever, C., and Alliance, S.
Scalable network I/O in Linux. In Proceed-
ings of the USENIX Annual Technical Conference,
FREENIX Track (2000), vol. 19.

[9] Wu, W., DeMar, P., and Crawford, M. Why
can some advanced ethernet nics cause packet re-
ordering? Communications Letters, IEEE 15, 2
(2011), 253 –255.

[10] Yi, Z., and Waskiewicz, P. Enabling Linux
network support of hardware multiqueue devices.
In Proc. of the 2007 Linux Symposium, pp. 305–
310.


