MAINTAINING CONTROL OVER SENSITIVE DATA IN THE PHYSICAL INTERNET

TOWARDS AN OPEN, SERVICE ORIENTED, NETWORK-MODEL FOR INFRASTRUCTURAL DATA SOVEREIGNTY

S. DALMOLEN, H. BASTIAANSEN, E. SOMERS, S. DJAFARI, M. KOLLENSTART, M. PUNTER

IPIC 2019 CONFERENCE, LONDON, THURSDAY JULY 11TH 2019
MAINTAINING CONTROL OVER SENSITIVE DATA IN THE PHYSICAL INTERNET
TOWARDS AN OPEN, SERVICE ORIENTED, NETWORK-MODEL FOR INFRASTRUCTURAL DATA SOVEREIGNTY

CONTENTS

› Sovereignty in data sharing
› From a hub to a network model approach
› IDS: A reference architecture
› Sovereignty over metadata

GOALS FOR TODAY / THE PAPER

› What is data sovereignty?
 › What?
 › Why
 › How?

› What is IDS (International Data Spaces)?
 › What is the IDS approach and architecture?
 › What is its status of technology?

› How to approach sovereignty on metadata?
 › ….
BACKGROUND

For logistics companies being data providers in Physical Internet supply chains maintaining data sovereignty over their sensitive data applies to a multitude of data consumers, e.g. other logistics companies, logistics service providers, authorities.

- a major challenge as data sovereignty concepts are currently mainly provided by (closed) communities with their own specific solutions.
- Consequently, the data provider is faced with both a threat of consumer lock-in by their community providers and with major integration efforts on defining managing and enforcing data sovereignty requirements for a multitude of data sharing relationships with different data consumers.

Research question:

- How to design an overarching technical, service and business architecture for a network-model approach for infrastructural data sovereignty?
DATA SOVEREIGNTY AS BASIS
FOR TRUST BETWEEN ECOSYSTEM PARTNERS

DATA SOVEREIGNTY
is the ability of a natural or legal person to exclusively and sovereignly decide concerning the usage of data as an economic asset.
DATA SOVEREIGNTY AND TRUST

Functional design aspect:

- Data sovereignty
- Data sharing agreements
- Enforcement of data sharing agreements
 - legal enforceability,
 - implementation enforceability
- Data provenance, logging, reporting
- System integrity monitoring

SECURITY

Non-functional design aspect:

The implementation of an IT-system must comply to its security level requirements as defined at system design and protect against malicious or unintentional security breaches.

- Confidentiality, Integrity, Availability (CIA), …
- All ICT-systems must be secure
DATA
AN ECONOMIC ASSET

Trading with data creates huge revenues for some focal companies in an ecosystem, which tend to assume monopolistic attitudes.

Rarely, the creators of data are benefitting from this value in an adequate way.

Companies do not take advantage of the value.

Making data economy really a success, there is a need for a ...

- vendor independent data market place
- connecting vendor-specific platforms
- open to all
- at low (transaction-) cost and
- easy to adopt and easy to use.
OBSTACLES CONCERNING EXTENSIVE SHARING OF DATA

Today

57% worry about revealing valuable data and business secrets.

59% fear the loss of control over their data.

55% feel inconsistent processes and systems as a (very) big obstacle.

32% fear that platforms do not reach the critical mass, so that data exchange will be interesting.

More Data Security

Improvement of Sovereignty

Optimising Processes and Cost Structures

Join us!

© PwC-Study on "Industrial Data Space"
SOVEREIGNTY IN DATA SHARING
USE CASE: MINIMIZATION OF TRANSPORT MOVEMENTS

TRUST RELATIONSHIPS FOR TYPICAL COLLABORATION SCENARIOS

Bilateral Relationship between LSPs

- Shipper
- LSP
- Transporter

Shipper

LSP

Transporter

Orchestration by a Trusted Third Party

- Shipper
- LSP
- Or orchestrator

Shipper

LSP

Orchestrator

Transporter

Relationship with implied Trust
Relationship with transferred Trust
Relationship with a priori Distrust
DATA SOVEREIGNTY MAINTAINING CAPABILITIES

› **Procedural data sovereignty maintaining capabilities:** these include administrative capabilities such as data sharing agreements (terms-of-use and conditions), certification and attestation, logging and data provenance, reporting and accountability.

 › Legal enforceability ensures that by means of automation generated digital data sharing agreements and their associated data sharing transactions are correct and acceptable in legal procedures.

› **Technical data sovereignty maintaining capabilities:** these include technical capabilities such as peer-to-peer data sharing, encryption and key management for data in transfer and in storage, sandboxing and containerization and policy-based admission control (Yavatkar et al. 1999) and enforcement and blockchains.

 › Technical enforceability ensures for the data provider that the agreed-upon conditions under which data is shared are (securely) implemented in the open infrastructure for multi-lateral data sharing
Support processes for data sharing

Definition and exposure of an available data set.
- Definition and publication of a data set
- Definition of a data sharing profile
- Publication of a data sharing profile

Making a data sharing agreement.
- Definition of terms-of-use, incl. usage and access control policies
- Definition of the commercial and juridical conditions
- Negotiation, acceptance and signing of a data sharing agreement

Performing a data sharing transaction.
- Clearing of data sharing transactions, including non-repudiation
- Data sharing, including binding of transactions to an agreement
- Settlement and discharging of data sharing transaction

Logging, provenance and reporting.
- Logging and binding of data transactions to agreements
- Tracking, monitoring and reporting of data transactions to
- Auditing, billing and conflict resolution

Metadata artefacts

- Data descriptor
- Data transaction
- Data request
- Data response
- Data sharing agreement
- Access control policy
- Usage control policy
- Security profile policy
- Service level
- Terms-of-use
- Commercial conditions
- Juridical conditions
- Contractual conditions
Examples of (Classes) of Access and Usage Restrictions

<table>
<thead>
<tr>
<th>Access control restrictions (access control policy)</th>
<th>Usage control restrictions (usage control policy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stating which individuals, roles or systems are allowed access to the data provided.</td>
<td>Stating (limitations on) how data may be used after it has been shared.</td>
</tr>
<tr>
<td>• Provide or restrict data access to specific users</td>
<td>• Provide or restrict data access for specific purposes</td>
</tr>
<tr>
<td>• Provide or restrict data access for specific systems</td>
<td>• Delete data after X days/months</td>
</tr>
<tr>
<td>• Allow access to data</td>
<td>• Use data not more than N times</td>
</tr>
<tr>
<td>• Inhibit access to data</td>
<td>• Use data in a specific time interval</td>
</tr>
<tr>
<td></td>
<td>• Log data access information</td>
</tr>
<tr>
<td></td>
<td>• Share data only if it is encrypted</td>
</tr>
<tr>
<td></td>
<td>• Control printing shared data</td>
</tr>
</tbody>
</table>
TOWARDS TO AN OPEN INFRASTRUCTURE

Technical experiment → Business experiment

Community solution → Proprietary (island) solution

Open infrastructure

Otherwise vendor-lockins and the legacy of the future!
FROM A (CLOSED) HUB MODEL TO AN (OPEN) NETWORK MODEL

A (CLOSED) HUB MODEL

Data Provider A → Shared Hub → Data Consumer B

Features
- Closed communities
- Sector specific
- No single entry point for users

AN (OPEN) NETWORK MODEL

Data Provider A → Connector A → Service A → Connector B → Service B → Data Consumer B

Features
- Peer-to-Peer data sharing
- Infrastructural trust
- Interoperability
 - Examples: banking, telecommunication, ….
Key requirements:

- Trust, trust, trust,…
- ‘Open’ infrastructure
REQUIREMENTS FOR TRUSTED DATA SHARING USING THE NETWORK-MODEL APPROACH

- **Peer-2-Peer data sharing**: local data is processed and sent directly to the data consumer

- **Distributed infrastructure for support services**

- **Openness for wide-scale adoption.**
 - *Open to end-users*: it does not force end-users into closed groups or deny access to any sectors of society but permits universal connectivity. This is also referred to as creating a ‘level playing field’.
 - *Open to solution providers*: it allows any solution provider to meet the requirements to provide enabling components in the distributed and open data sharing infrastructure under competitive conditions.
 - *Open to service providers and to innovation*: it provides an open and accessible environment for service providers to join and for new applications and services to be introduced.
IDS ASOCIATION (IDSA)

Objectives:

› To foster conditions and governance towards an international standard for the IDS architecture
› To develop and continue the work on standards for the IDS based on use cases
› To support certifiable software solutions and business models

IDS DEVELOPMENT

Objectives:

› Create a blueprint for the data space
 › Consisting of a business, data & service, software and security architecture
› Safe data exchange and the efficient combination of data
› Configurable for individual use cases / scenarios

Status Mid 2018

Endless Connectivity

Governance for the data economy

Trust between security domains
IDS – A REFERENCE ARCHITECTURE
OPEN NETWORK MODEL OF TRUSTED INTERMEDIARY ROLES

PEER-TO-PEER FLOW OF PRIMARY DATA

Data Provider share data Data Consumer

- Core Participant
- Intermediary Trusted Role
- Software and Services

primary data flow
metadata flow
software flow
IDS – A REFERENCE ARCHITECTURE
OPEN NETWORK MODEL OF TRUSTED INTERMEDIARY ROLES

Core Participant
Intermediary Trusted Role
Software and Services

Data Provider

Data Consumer

Identity Provider
DAPS Provider

Share data

Primary data flow
Metadata flow
Software flow

SUPPORT TRUST
IDS – A REFERENCE ARCHITECTURE
OPEN NETWORK MODEL OF TRUSTED INTERMEDIARY ROLES

MEDIATION AND ADMINISTRATIVE SUPPORT

- Core Participant
- Intermediary Trusted Role
- Software and Services

Primary data flow
- metadata flow
- software flow
IDS – A REFERENCE ARCHITECTURE
OPEN NETWORK MODEL OF TRUSTED INTERMEDIARY ROLES

Core Participant
Intermediary Trusted Role
Software and Services

Broker Service Provider
Clearing House
Identity Provider
DAPS Provider
App Store Provider
App Provider

Data Provider
Data Consumer

metadata flow
software flow

primary data flow

VALUE ADDING DATA SHARING APPS
IDS – A REFERENCE ARCHITECTURE
OPEN NETWORK MODEL OF TRUSTED INTERMEDIARY ROLES

Core Participant
Intermediary Trusted Role
Software and Services

Data Provider
Broker Service Provider
Clearing House
Identity Provider
DAPS Provider
App Store Provider
App Provider
Vocabulary Provider

Data Consumer

primary data flow
metadata flow
software flow

provide vocabularies
publish metadata
log transaction metadata
log transaction metadata
share data
search metadata
use data apps
publish app

ENABLE SEMANTICS
IDS – A REFERENCE ARCHITECTURE
OPEN NETWORK MODEL OF TRUSTED INTERMEDIARY ROLES

- Core Participant
- Intermediary Trusted Role
- Software and Services

Data Provider → Broker Service Provider → Data Consumer
Data Provider → Clearing House → Data Consumer

Identity Provider

DAPS Provider

App Store Provider

App Provider

Vocabulary Provider

provide vocabularies
log transaction metadata
use data apps
publish app

primary data flow
metadata flow
software flow
DISCUSSION

Implementation of the new world requires that shippers, LSP’s, transporters and other service providers in the logistic value chain share (potentially sensitive) business and operations data. As such, they give rise to new challenges:

- **Compliance to internal business policies for trusted data sharing**: to reap the indicated benefits of exchanging data, operational data which may be valuable and business-sensitive has to be shared with stakeholders that could potentially be competitors. A trustworthy infrastructure based on solid agreements and contracts and a technical secure data sharing infrastructure are a prerequisite for convincing stakeholders to exchange such data, i.e. an interoperable, multi-lateral, trusted data sharing infrastructure.

- **Compliance to external regulatory policies**: to share data, different regulations are introduced by European law makers. Notwithstanding the inherent complex role of data and algorithms, an increased understanding is needed about how data regulation should be applied in case of data platforms.
THANK YOU FOR YOUR ATTENTION

Take a look:

- WWW.DL4LD.NET
- TIME.TNO.NL

S. (Simon) Dalmolen, MSc

Tel: +31 6 153 26114

Simon.Dalmolen@TNO.NL
IDS - ORGANIZATION
IDS ASSOCIATION: REGIONAL HUBS

- Technical Research Centre of Finland - Espoo, Finland
- Czech Technical University in Prague - Prague, Czech Republic
- Technological Centre - Bilbao, Spain
- Higher Education and Research Institution - Paris, France
- Cefriel - Digital Innovation Centre - Milan, Italy
- Organization for Applied Scientific Research - The Hague, Netherlands
IDS - DATA SOVEREIGNTY
RELATION TO ALICE INFORMATION SYSTEM RESEARCH AND INNOVATION ROADMAP

IDS MAY FILL-IN (PART OF) THE ALICE DATA GOVERNANCE ROADMAP

ALICE THEMES

Themes addressed in the ALICE ‘Information Systems for Interconnected Logistics’ Research and Innovation Roadmap:

- ICT Innovation
- New Business Models
- Data Governance

IDS - DATA SOVEREIGNTY
RELATION TO ALICE INFORMATION SYSTEM RESEARCH AND INNOVATION ROADMAP

IDS MAY FILL-IN (PART OF) THE ALICE DATA GOVERNANCE ROADMAP

ALICE THEMES

› ICT Innovation
› New Business Models
› Data Governance

IDS – REFERENCE ARCHITECTURE

IDS: WHAT IT IS & WHAT IT IS NOT

WHAT IT IS
- Fundamental approach to the basic issue of data sovereignty across sectors and organizations
 - Interoperability, Standardization, Governance
 - Based on open network model
 - Infrastructural layer to build value adding services and solutions upon

WHAT IT IS NOT
- Solution to all challenges in logistics
 - Supply chain collaboration
 - However: combined IDS and blockchain solution are considered
 - Semantic interoperability
 - Doesn’t prescribe semantic standards
 - However, provides the ‘hooks’ for semantic conversion app’s